期刊文献+

基于主动特征选择的在线加权多实例目标跟踪

Online weighted multiple instance object tracking via active feature selection
下载PDF
导出
摘要 为了解决自适应运动目标跟踪中常见的漂移现象,提出一种基于主动特征选择(AFS)的在线权重多实例运动目标跟踪算法,在原有多实例学习的框架中引入一种新的包概率模型——加权和模型,然后使用主动特征选取法来提取更高效的特征,以降低建立分类器模型的不确定性,并通过优化Fisher信息判别准则进行在线boosting特征选取。实验结果表明,该方法鲁棒性较好,可以有效解决漂移问题,并能实时地完成在线跟踪。在此研究基础上将考虑更有效的光照不变特征。 To solve the common problem of drifting phenomenon in adaptive object tracking, this paper proposed an online weighted multiple instance object tracking method via active feature selection. In the prime framework of multiple instance learning, it drew a new kind of bag probability model-weighted sum model, and then used an active feature selection approach to get more informative features to decrease the uncertainty of classification model. Otherwise, optimizing the Fisher information criterion to select features in an online boosting method. Experimental resuhs show that this method is more robust, can effectively solve the drifting problem, and track the target real-time online. More effcient illumingtion invariant features will be considered based on this reserach.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3463-3466,3470,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61373055)
关键词 费舍尔信息 主动特征选择 权重多实例学习 加权和模型 “漂移”现象 目标跟踪 Fisher information active feature selection WMIL weiged sum model drifting phenomenon object tracking
  • 相关文献

参考文献22

  • 1ForsyDA.计算机视觉:一种现代方法[M].王宏,等译.北京:电子工业出版社.2004. 被引量:1
  • 2Babenko B, Yang M H, Belongie S. Robust object tracking with on- line multiple instance learning[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(8) :1619-1632. 被引量:1
  • 3Bao Chenglong, Wu Yi, Ling Haibin, et al. Real time robust 11 tracker using accelerated proxinml gradient approach [ C ]//Proe of IEEE Conference on Computer Vision and Pattern Recognition. 2012: 1830- 1837. 被引量:1
  • 4Black M J, Jepson A D. Eigentraeking:robust matching and tracking of articulated objects using a view-based representation [ J]. Interna- tional Journal of Computer Vision, 1998,26( 1 ) :63-84. 被引量:1
  • 5Chen H F, Belhumeur P N, Jaeobs D W. In search of illumination invariants[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. [ S. 1. ] : IEEE Press,2000:254-261. 被引量:1
  • 6Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012,34(7) :1409- 1422. 被引量:1
  • 7Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking[ C]//Proc of the 10th European Conference on Computer Vision. Berlin : Springer,2008 : 234- 247. 被引量:1
  • 8Hare S, Saffarl A, Torr P H S. Struck: Structured output tracking with kernels[ C ]//Proc of IEEE International Conference on Compu- ter Vision. [ S. 1. ] : IEEE Press,2011:263- 270. 被引量:1
  • 9Kwon J, Lee K M, Visual tracking decomposition[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2010:1269- 1276. 被引量:1
  • 10Ross D A, Lira J, Lin R S, et al. Incremental learning for robust vi- sual tracking[ J ]. International Journal of Computer Vision ,2008, 77(1-3) :125-141. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部