期刊文献+

Reduction–melting behaviors of boron-bearing iron concentrate/carbon composite pellets with addition of CaO

Reduction–melting behaviors of boron-bearing iron concentrate/carbon composite pellets with addition of CaO
下载PDF
导出
摘要 Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced. Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期926-932,共7页 矿物冶金与材料学报(英文版)
基金 the financial support of the National Natural Science Foundation of China (Grant Nos. 51274033 and 51374024)
关键词 iron concentrate BORON ore reduction composite pellets calcium oxide iron concentrate boron ore reduction composite pellets calcium oxide
  • 相关文献

参考文献4

二级参考文献27

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部