期刊文献+

拓扑短路无关的测地距离及其应用 被引量:1

Topological Shortcut Independent Geodesic Distance and its Application
下载PDF
导出
摘要 拓扑短路作为一种特殊的模型缺陷,对测地距离的计算产生重要影响,使用传统算法不能得到符合预期的测地距离场.为了适应内蕴几何分析的需要,提出一种与拓扑短路无关的测地距离算法.首先计算模型表面的形状直径函数,并引入一个粗细阈值来确定初始可行域,即测地线允许穿过的区域;然后使用腐蚀膨胀技巧对初始可行域进行规整化处理,得到最终的可行域;在实际计算测地线时,通过限制距离信息只能在可行域内传播,最终得到拓扑短路无关的测地距离场.实验结果表明,该算法可以产生更加鲁棒的形状描述. Topological shortcuts, as a special kind of model defects, have a significant impact on the compu-tation of geodesic distance. Conventional algorithms cannot give desirable results. Therefore, a robust geo-desic algorithm independent of topological shortcuts is proposed to meet requirements of intrinsic geometry analysis. During the first step, the shape diameter function of the input mesh is computed. Based on a given thickness tolerance, the initial feasible domain is determined for purpose of defining where geodesics can walk. By enforcing a dilation and erosion process, we can get a more meaningful feasible domain. In this way, it is natural to get a topological shortcut independent geodesic by restricting the paths inside the feasi-ble domain. Experimental results show that the shortcut independent algorithm can induce a robust shape descriptor.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第11期2149-2154,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61300168) 浙江省自然科学基金重大项目(D1080807) 浙江省国际科技合作专项(2013C24027) 浙江大学CAD&CG国家重点实验室开放课题(A1412) 浙江省重中之重开放课题(XKXL1429 XKXL1406 XKXL1311) 宁波市自然科学基金(2013A610058 2013A610053) 宁波大学研究生教育教学研究项目(JGZDI201501) 宁波大学教研项目(JYXMxsj201405)
关键词 测地距离 拓扑短路 形状直径函数 模型匹配 geodesic distances topological shortcuts shape diameter function shape matching
  • 相关文献

参考文献30

  • 1Attene M, Campen M, Kobbelt L. Polygon mesh repairing: anapplication perspective[J]. ACM Computing Surveys, 2013,45(2): Article No.15. 被引量:1
  • 2Pang X F, Song Z, Lau R W H. An effective quad-dominantmeshing method for unorganized point clouds[J]. GraphicalModels, 2014, 76 (2): 86-102. 被引量:1
  • 3Kustra J, Jalba A, Telea A. Robust segmentation of multiple intersectingmanifolds from unoriented noisy point clouds[J].Computer Graphics Forum, 2014, 33 (1): 73-87. 被引量:1
  • 4Campen M, Kobbelt L. Walking on broken mesh: defect-tolerantgeodesic distances and parameterizations[J]. ComputerGraphics Forum, 2011, 30 (2): 623-632. 被引量:1
  • 5Quynh D T P, He Y, Xin S Q, et al. An intrinsic algorithm forcomputing geodesic distance fields on triangle meshes withholes[J]. Graphical Models, 2012, 74 (4): 209-220. 被引量:1
  • 6Radwan M, Ohrhallinger S, Wimmer M. Efficient collision detectionwhile rendering dynamic point clouds[C] //Proceedingsof the Graphics Interface Conference. Toronto: Canadian InformationProcessing Society Press, 2014: 25-33. 被引量:1
  • 7Crane K, Weischedel C, Wardetzky M. Geodesics in heat: anew approach to computing distance based on heat flow[J].ACM Transactions on Graphics, 2013, 32 (5): Article No.152. 被引量:1
  • 8Mitchell J S B, Mount D M, Papadimitriou C H. The discretegeodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668. 被引量:1
  • 9Sharir M, Schorr A. On shortest paths in polyhedral spaces[J].SIAM Journal on Computing, 1986, 15 (1): 193-215. 被引量:1
  • 10Xin S Q, Wang G J. Improving Chen and Han’s algorithm onthe discrete geodesic problem[J]. ACM Transactions on Graphics,2009, 28 (4): Article No.104. 被引量:1

二级参考文献30

共引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部