期刊文献+

区间二型概率模糊模型下的分层决策及应用

Hierarchical Decision and Its Application Based on Interval Type-2 Fuzzy Probability Model
下载PDF
导出
摘要 在二维均匀分布的假定条件下探索区间二型模糊集下的区间值信息系统,通过定义在属性a下对象x_j与x_i相比较时x_j对于a比x_i对于a的优先程度,建立属性集A下的区间二型概率模糊模型,得到模糊优先对比矩阵,确定模糊优先关系,进行多属性的分层决策,通过实例分析,模型可行有效。 Under the condition of two-dimensional uniform distribution assumption, the interval- valued information system of type-2 fuzzy set is discussed. Taking into account the superior extent of attribute projects xj to xi when compared to attribute an interval type 2 fuzzy probability model under the attribute set A comparison matrix and fuzzy preference hierarchical decision is conducted. Feasibility analyzed. is established, furthermore, the fuzzy priority relation are obtained, the multiple attribute of the model and effectiveness of algorithm are
出处 《合肥学院学报(自然科学版)》 2015年第4期24-29,共6页 Journal of Hefei University :Natural Sciences
关键词 区间二型模糊集 优先关系 均匀分布 分层决策 nterval type-2 fuzzy set prior relationship uniform distribution hierarchical decision
  • 相关文献

参考文献12

  • 1Zadeh L A. Fuzzy Sets[J]. Information and Control* 1965,8(3) :338-353. 被引量:1
  • 2Zadeh L A. Toward a Theory of Fuzzy System [M]. United States: NASA Washington, 1969 : 123-180. 被引量:1
  • 3Zadeh L A. The Concepet of a Linguistic Variable and its Application to Approximate Reasoning[M], US: Springer,1975:199-249. 被引量:1
  • 4Kamik N N,Mendel J M. Operation on Type-2 Fuzzy Sets[J]. Fuzzy and Systems,2001.122(7) :327-348. 被引量:1
  • 5谢季坚,刘承平编著..模糊数学方法及其应用 第2版[M].武汉:华中理工大学出版社,2000:298.
  • 6毛军军,姚登宝,王翠翠,吴涛.α-优势关系下的概率粗糙模型及其应用[J].计算机工程与应用,2012,48(18):48-52. 被引量:3
  • 7Saaty T L. Modeling Unstructured Decision Problems the Theory of Analytical Hierarchies [J]. Math ComputSimulation,1978,20(3〉*147-158. 被引量:1
  • 8Qian Yuhua,Liang Jiye, Dang Chuangyin. Interval Ordered Information Systems[J]. Computers and Mathematics withApplications,2008,56(8)-1994-2009. 被引量:1
  • 9邱旭琴,魏立力.优势关系下随机信息系统的属性约简[J].计算机工程与应用,2011,47(2):131-135. 被引量:11
  • 10Mesut Kilic. Investment Project Evaluation by a Decision Making Methodology Based on Type-2 Fuzzy Sets[J].Applied Soft Computing, 2015,27:399-410. 被引量:1

二级参考文献21

  • 1Pawlak Z.Rough sets[J].Intemafional Journal of Computer and Information Science, 1982,11:314-356. 被引量:1
  • 2Sharer G A.Mathematical theory of evidence[M].Princeton:Princeton University Press, 1976. 被引量:1
  • 3Crreco S, Matarazzo B, Slowinski R.Rough sets theory for multicriteria decision analysis[J].European Journal of Operational Research,2001,129( 1 ) : 1-47. 被引量:1
  • 4Greco S, Matarazzo B, Slowinski R.Variable consistency model of dominance-based rough sets approach[C]//Ziarko W, Yao Y. LNAI 2005 : RSCTC2OOO.Berlin : Springer-Verlag,2001 : 170-181. 被引量:1
  • 5Inuiguchi M, Yoshioka Y.Variable-preeision dominance-based rough set approach[C]//Greco S.LNAI 4259: RSCTC 2006.Berlin: Springer-Verlag, 2006: 203-212. 被引量:1
  • 6Blaszczynski J, Greco S, Slowinski R, et al.On variable consistency dominance-based rough set approaches[CJ//Greco S.LNAI 4259: RSCTC 2006.Berlin:Springer- Verlag,2006:191-202. 被引量:1
  • 7Blaszczynski J, Greco S, Slowinski R, et al.Monotonic variable consistency rough set approaches[C]//Yao J T.LNAI 4481: RSKT 2007.Berlin:Springer-Verlag,2007:126-133. 被引量:1
  • 8Hu Q H,Yu D R.Variable precision dominance based rough set model and reduction algorithm for preference-ordered data[C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics,IEEE,2004..2279-2284. 被引量:1
  • 9Jian L R,Li M Y.An extension of VPRS model based on dominance relation[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery,IEEE,2007:113-118. 被引量:1
  • 10Greco S, Matarazzo B, Slowinski R.Rough approximation by dominance relations[J].Intemational Journal of Intelli- gent Systems,2002,17(2) : 153-171. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部