期刊文献+

广义线性模型组LASSO路径算法 被引量:5

An algorithm for the estimation of regularization paths of generalized linear models with group LASSO penalty
原文传递
导出
摘要 广义线性模型组LASSO(least absolute shrinkage and selection operator)路径β(λ)的计算有两项核心内容:选择路径参数λ的取值;计算组LASSO估计,即给定λ值的β(λ).目前,在广义线性模型组LASSO路径的计算中,使用格点法选择λ值,基于广义线性模型似然函数一阶Taylor近似的坐标下降算法则常用于计算组LASSO估计.本文给出的广义线性模型组LASSO路径算法由两个子算法组成:第一个子算法的目的是选出使得活跃集恰好改变的λ值;第二个子算法是计算组LASSO估计的二阶近似坐标下降算法.模拟和实际数据分析均表明,第一个子算法能高效地发现使得活跃集恰好改变的λ值,相比基于广义线性模型似然函数一阶Taylor近似的坐标下降算法,本文的二阶近似算法有较明显的速度优势. Computing the regularization paths of generalized linear models(GLM) with group LASSO penalty can be decomposed into two problems: Selecting the path parameter λ and computing group LASSO solution?β(λ) given λ. In practice,grid method is usually used to solve the first one and coordinate descent algorithm based on the first order Taylor expansion of loss function of GLM is then used to solve the second. This paper aims at proposing algorithms that solve these two problems more efficiently. Firstly,we give a path following algorithm that attempts to find the λ's that correspond to the change of active set. Secondly,we take advantage of the properties of GLM,and use second-order,instead of first-order,Taylor approximation of the loss function of GLM in coordinate descent method to achieve better precision in less time. Simulated and real data sets show that our algorithm is capable of efficiently pinpointing the critical λ's that pair with changes of active set and that our proposed coordinate descent algorithm based on second-order approximation is competitive in speed compared with that based on second-order approximation.
出处 《中国科学:数学》 CSCD 北大核心 2015年第10期1725-1738,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:71403310) 北京高等学校青年英才计划 中央财经大学青年科研创新团队 中央财经大学学科建设基金资助项目
关键词 组LASSO 广义线性模型 正则化路径 坐标下降 二阶近似 group LASSO generalized linear models regularization path coordinate descent second-order Taylor approximation
  • 相关文献

参考文献1

二级参考文献33

  • 1罗楚亮.城乡分割、就业状况与主观幸福感差异[J].经济学(季刊),2006,5(3):817-840. 被引量:192
  • 2李涛,子璇(校对).社会互动与投资选择[J].经济研究,2006,41(8):45-57. 被引量:155
  • 3李涛.参与惯性和投资选择[J].经济研究,2007,42(8):95-109. 被引量:41
  • 4Allison, P. , 1999, "Comparing Logit and Probit Coefficients across Groups", Sociological Methods and Research, 28, 186--208. 被引量:1
  • 5Appleton, S. and L. Song, 2008, " Life Satisfaction in Urban China: Components and Determinants", World Development, 36, 2325--2340. 被引量:1
  • 6Bajari, P. , P. Chan, D. Krueger and D. Miller,2010, "A Dynamic Model of Housing Demand : Estimation and Policy Implications", NBER Working Paper No. 15955. Available at: http://www, nber. org/papers/w15955. 被引量:1
  • 7Balfor, D. and J. Smith, 1996, "Transforming Lease-Purchase Housing Programs for Low Income Families: Towards Empowerment and Engagement", Journal of Urban Affairs, 18, 173--188. 被引量:1
  • 8Ball, R. and K. Chernova, 2008, "Absolute Income, Relative Income and Happiness", Social Indicators Research, 88, 497--529. 被引量:1
  • 9Blanchflower, D. , 2007, "International Evidence on Well-being", NBER Conference Paper on Nationwide Time Accounting: TheCurrency of Life. 被引量:1
  • 10Bucchianeri, G. , 2009, "The American Dream.'? The Private and External Benefits of Homeownership", Working Paper, The Wharton School of Business. 被引量:1

同被引文献31

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部