期刊文献+

Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model 被引量:1

Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model
原文传递
导出
摘要 The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.
出处 《International Journal of Biomathematics》 2015年第5期31-51,共21页 生物数学学报(英文版)
关键词 Variable directions difference scheme nonlinear partial differential equations stability CONVERGENCE vein formation. 非线性偏微分方程组 差分格式 二维模型 收敛性 稳定性 构造方案 组织形成 时间步长
  • 相关文献

参考文献34

  • 1V. N. Abrashin, A variant of the method of variable directions for the solution of multi-dimensional problems in mathematical physics. I, Differ. Uravn. 26 (1990) 314-323; Differ. Equations 26 (1990) 243-250 (in Russian). 被引量:1
  • 2V. N. Abrashin and I. A. Dzuba, Difference schemes of the method of variable direc- tions satisfying the laws of conservation. II, Vesti Akad. Navuk BSSR, Set. Fiz-Ma. Nauk 5 (1989) 3-9 (in Russian). 被引量:1
  • 3V. N. Abrashin, I. A. Dzuba and A. R. Khizhnyak, Difference schemes of the method of variable directions satisfying the laws of conservation. I, Vesti Akad. Navuk BSSR, Ser. Fiz-Mat. Nauk 6 (1986) 12 20, (in Russian). 被引量:1
  • 4V. N. Abrashin and V. A. Mukha, On a class of efficient finite-difference schemes for solving multi-dimensional problems in mathematical physics, Differ. Uravn. 28 (1992) 1786-1799; Differ. Equations 28 (1992) 1786-1799 (in Russian). 被引量:1
  • 5N. G. Abrashina-Zhadaeva and N. S. Romanova, Multicomponent vector decomposi- tion schemes for the solution of multidimensional problems of mathematical physics, Differ. Uravn. 42 (2006) 883-894; Differ. Equations 42 (2006) 941 953 (in Russian). 被引量:1
  • 6J. Bell, C. Cosner and W. Bertiger, Solutions for a flux-dependent diffusion model, SIAM J. Math. Anal. 13 (1982) 758-769. 被引量:1
  • 7H. Candela, A. Martinez-Laborda and J. Luis Micol, Venation pattern formation in Arabidopsis thaliana vegetative leaves, Develop. Biol. 205 (1999) 205-216. 被引量:1
  • 8J. Douglas, On the numerical integration of Uxx + Uyy : Ut by implicit methods, J. Soc. Industr. Appl. Math. 3 (1955) 42-65. 被引量:1
  • 9J. Douglas and D. W. Peaceman, Numerical solution of two-dimensional heat flow problems, AIChEJ 1 (1955) 505 512. 被引量:1
  • 10J. Douglas, D. W. Peaceman and H. H. Rachibrd, A method for calculating multi- dimensional immiscible displacement, Trans. AIME 216 (1959) 297 308. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部