Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model
被引量:1
Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model
摘要
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.
参考文献34
-
1V. N. Abrashin, A variant of the method of variable directions for the solution of multi-dimensional problems in mathematical physics. I, Differ. Uravn. 26 (1990) 314-323; Differ. Equations 26 (1990) 243-250 (in Russian). 被引量:1
-
2V. N. Abrashin and I. A. Dzuba, Difference schemes of the method of variable direc- tions satisfying the laws of conservation. II, Vesti Akad. Navuk BSSR, Set. Fiz-Ma. Nauk 5 (1989) 3-9 (in Russian). 被引量:1
-
3V. N. Abrashin, I. A. Dzuba and A. R. Khizhnyak, Difference schemes of the method of variable directions satisfying the laws of conservation. I, Vesti Akad. Navuk BSSR, Ser. Fiz-Mat. Nauk 6 (1986) 12 20, (in Russian). 被引量:1
-
4V. N. Abrashin and V. A. Mukha, On a class of efficient finite-difference schemes for solving multi-dimensional problems in mathematical physics, Differ. Uravn. 28 (1992) 1786-1799; Differ. Equations 28 (1992) 1786-1799 (in Russian). 被引量:1
-
5N. G. Abrashina-Zhadaeva and N. S. Romanova, Multicomponent vector decomposi- tion schemes for the solution of multidimensional problems of mathematical physics, Differ. Uravn. 42 (2006) 883-894; Differ. Equations 42 (2006) 941 953 (in Russian). 被引量:1
-
6J. Bell, C. Cosner and W. Bertiger, Solutions for a flux-dependent diffusion model, SIAM J. Math. Anal. 13 (1982) 758-769. 被引量:1
-
7H. Candela, A. Martinez-Laborda and J. Luis Micol, Venation pattern formation in Arabidopsis thaliana vegetative leaves, Develop. Biol. 205 (1999) 205-216. 被引量:1
-
8J. Douglas, On the numerical integration of Uxx + Uyy : Ut by implicit methods, J. Soc. Industr. Appl. Math. 3 (1955) 42-65. 被引量:1
-
9J. Douglas and D. W. Peaceman, Numerical solution of two-dimensional heat flow problems, AIChEJ 1 (1955) 505 512. 被引量:1
-
10J. Douglas, D. W. Peaceman and H. H. Rachibrd, A method for calculating multi- dimensional immiscible displacement, Trans. AIME 216 (1959) 297 308. 被引量:1
-
1程爱杰.IMPROVEMENT ON STABILITY AND CONVERGENCE OF A. D. I. SCHEMES[J].Applied Mathematics and Mechanics(English Edition),1999,20(1):76-83.
-
2Guodong ZHANG,Xiaojing DONG,Yongzheng AN,Hong LIU.New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations[J].Applied Mathematics and Mechanics(English Edition),2015,36(7):863-872.
-
3孙毓平,吴江航.THE STABILITY AND CONVERGENCE OF THE FINITE ANALYTIC METHOD FOR THE NUMERICAL SOLUTION OF CONVECTIVE DIFFUSION EQUATION[J].Applied Mathematics and Mechanics(English Edition),1989,10(6):521-528.
-
4徐美玉,姚怡,鲁大勇.一类矩阵伸缩框架小波包的构造[J].河南大学学报(自然科学版),2016,46(4):500-504.
-
5HaI-jun Wu,Rong-hua Li(Institute of Mathematics, Jilin University, Changchun 130023, China).THE STABILITY AND CONVERGENCE OF COMPUTINGLONG-TIME BEHAVIOUR[J].Journal of Computational Mathematics,1999,17(4):397-418.
-
6何大可,万蓉.一种素数域上的非超奇椭圆曲线构造方案[J].西南民族大学学报(自然科学版),2003,29(1):9-15. 被引量:1
-
7熊岳山.THE CHEBYSHEV PSEUDOSPECTRAL DOMAIN DECOMPO SITION METHOD FOR SOLVING TWO-DIMENSIONAL ELLIPTIC EQUATION[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1996,5(1):1-12.
-
8张石生,王雄瑞,刘敏,朱浸华.Almost sure T-stability and convergence for random iterative algorithms[J].Applied Mathematics and Mechanics(English Edition),2011,32(6):805-810.
-
9鲁大勇,樊启斌.多个生成子生成的Gabor框架[J].中国科学:数学,2010,40(7):693-708. 被引量:4
-
10孟明会,崔丽鸿,白欣叶,王海峰.二元半规范双小波框架滤波器的构造[J].北京化工大学学报(自然科学版),2017,44(2):124-128.