期刊文献+

基于小波的扇形束CT图像局部重建算法

Local Reconstruction Algorithm of Fan-Beam CT Images Based on Wavelet
下载PDF
导出
摘要 提出一种基于小波的扇形束局部重建算法,首先插值获得的的投影数据,然后求得待重建图像的尺度系数和小波系数,对插值后的投影进行滤波,最后进行小波重构得到感兴趣区域的局部图像,该算法不仅减少了对检测物体辐射剂量,而且缩短了重建时间;最后比较了不同小波的重建效果,Cofflet2小波能获得更高质量的重建图像. In this paper, it is puts forword a fan-beam local image reconstruction algorithm. Firstly,on the projection data interpolation. Secondly, seek to Scale coefficients and wavelet coefficient of the of the reconstruction image, then filter the projection of interpolation. Lastly, the wavelet reconstruction get interested in area of local image. This algorithm not only reduces the radiation dose detection object, and shorten the reconstruction time. Finally also compares the different wavelet reconstruction effect, Cofflet2 wavelet can obtain higher quality of reconstruction image.
作者 郭荣 乔志伟
出处 《微电子学与计算机》 CSCD 北大核心 2015年第10期63-66,71,共5页 Microelectronics & Computer
基金 国家自然科学基金(61322211)
关键词 扇形束 小波重建 滤波反投影 局部重建 fan beam wavelet reconstructiom filtration backprojection (FBP) local reconstruction
  • 相关文献

参考文献15

  • 1Yin X, Ng B W H, Ferguson B, et al. Wavelet based local tomographic image using terahertz techniques[J]. Digital Signal Processing, 2009, 19(4) : 750-763. 被引量:1
  • 2Rashid Farrokhi F, Liu K J R, Berenstein C A, et al. Wavelet-based multiresolution local tomographyl-J-]. Image Processing, IEEE Transactions on, 1997, 6 (10):1412-1430. 被引量:1
  • 3Rashid-Farrokhi F, Liu K J R, Berenstein C A. Local tomography in fan-beam geometry using wavelets[C] ///Image Processing, 1996. , International Conference on. Zurich,Switzerland,IEEE, 1996. 709-712. 被引量:1
  • 4Dong B, Li J, Shen Z. X-ray CT image reconstruction via wavelet frame based regularization and Radon do- main inpainting[J]. Journal of Scientific Computing, 2013, 54(2/3) : 333-349. 被引量:1
  • 5Bhatia M, Karl W C, Willsky A S. A wavelet-based method for multiscale tomographic reconstruction[J]. Medical Imaging, IEEE Transactions on, 1996, 15 (1) : 92-101. 被引量:1
  • 6Zhao S, Robeltson D D, Wang G, et al. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses[J]. Medical Imaging, IEEE Transactions on, 2000, 19(12): 1238-1247. 被引量:1
  • 7Hsieh C T, Lai E, Wang Y C. An effective algorithm for fingerprint image enhancement based on wavelet transform [J]. Pattern Recognition, 2003, 36 (2) : 303-312. 被引量:1
  • 8马有为..基于小波的图像重建扇束卷积反投影算法[D].北京交通大学,2007:
  • 9罗戎蕾,汪元美,高欣.基于小波的图像重建算法研究[J].电路与系统学报,2005,10(3):112-115. 被引量:3
  • 10马晨欣,胡君杰,闫镔.CT扇形束滤波反投影图像重建算法优化[J].激光与光电子学进展,2012,49(9):82-87. 被引量:17

二级参考文献40

  • 1[12]F. Rashid-Farrokhi, K. J. R. Liu, and C. A. Berenstein. Local tomography in fan-Beam geometry using wavelets [ J ]. IEEE int. Conf. Image Processing, 1996,709-712. 被引量:1
  • 2[15]汪元美.现代医学成像理论[M].杭州:浙江大学出版社.2000.37-55. 被引量:1
  • 3[1]Altes RA. Wavelets, tomography, and line segment image representations[ J ] . SPIE, Advanced Signal-Processing Algorithms, Architectures, and Implementtations, 1990, ( 1348 ) :268 - 278 被引量:1
  • 4[2]M. Holschneider. Inverse Radon transforms through inverse wavelet transforms[ J]. Inverse Problems, 1991 , (7) :853 - 861. 被引量:1
  • 5[3]D. Walnut. Applications of Gabor and wavelet expansions to the Radon transform, in Probabilistic and Stochastic Methods in Analysis,with Applications,J. S. Byrnes and al, Eds. , Kluwer Academic Publishers[ J]. Dordrecht ( the Netherlands) , 1992,187 - 205. 被引量:1
  • 6[4]C. Berenstein and D. Walnut. Local inversion of the Radon transform in even dimensions using wavelets, in Proceedings of the conference75 Years of Radon Transform, 1994, 38 - 58. 被引量:1
  • 7[5]Peyrin F, Zaim M, Goutte R. Multiscale reconstruction of tomographic images [ J ]. IEEE, 1992,219 - 221. 被引量:1
  • 8[6]Guedon Jean-Pierre, Yves Bizais. Band- limited and haar filtered back-projection reconstructions[ J]. IEEE Trans MedImag, 1994,13(3) :430 -440. 被引量:1
  • 9[7]Bhatia M, Karl W C, Willsky AS. A wavelet-based method for multiscale tomo- graphic reconstruction[ J]. IEEE Trans MedImag, 1996,15(1) :92-101. 被引量:1
  • 10[8]J. de Stefano and T. Olson J. Wavelet localization of the radon transform in even dimensions[ J]. IEEE Trans. Signal. Proc. , 1992,137-140. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部