期刊文献+

Cr/Ti掺杂石墨烯活化CO_2分解的理论研究 被引量:1

Theoretical study of the dissociation of CO_2 catalyzed by Cr/Ti-doped graphene
下载PDF
导出
摘要 为筛选更高效的CO2分解还原的催化材料,采用密度泛函理论中的B3LYP方法结合6-31G(d)基组,研究了Cr、Ti掺杂石墨烯对CO2分子的吸附与催化分解的机理.研究结果表明:CO2分子在Cr元素和Ti元素掺杂石墨烯表面的吸附为放热过程,吸附能分别为28.3 kcal/mol和7.7 kcal/mol,两种元素掺杂石墨烯催化CO2分子中C-O断裂的活化能分别为15.5 kcal/mol和7.8 kcal/mol,反应过程遵循插入-消除原理,计算结果为CO2还原的催化剂设计提供理论指导. In artier to screen the highly efficient catalyst for the reduction of CO2 molecule, the B3LYP method in comhination with the 6 -31G(d) basis set was used to calculate the adsorption of C02 molecule on surfaces of the Cr - doped graphene and Ti - doped graphene. Meanwhile, the CO2 dissociation mechanism catalyzed by the Crdoped graphene and Ti -doped graphene was also considered with the same calculation method. Results show that the process is exothermal for the CO2 adsorption on the doped - graphene surface. The adsorption ener- gies are 28.3 kcal/mol and 7.7 koal/mol for the CO2 adsorption on the Cr - doped graphene and Ti - doped gTa- phene surface, respectively. The dissociation of CO2 catalyzed by the Cr/Ti - doped graphene follows the insertion - elimination mechanism. The calculated activation energies of the C - O bond dissociation are 15.5 kcal/ mol and 7, 8 kcal/mol for the Cr and Ti - doped graphene, respectively. Our calculation results would he a guideline for the design of catalyst for the CO2 reduction.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2015年第5期763-768,共6页 Journal of Atomic and Molecular Physics
关键词 掺杂石墨烯 二氧化碳 分解 密度泛函理论 Doped- graphene GO2 Dissociation DFT
  • 相关文献

参考文献27

  • 1Cao L, Bala G, Caldeira K, et al. Importance of car- bon dioxide physiological forcing to future climate change [J]. Proc. Natl. Acad. Sci. USA, 2010, 107 (21) : 9513. 被引量:1
  • 2Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [ J ]. Chem. Soc. Rev. , 2011, 40(7) ~ 3703. 被引量:1
  • 3Centi G, Quadrelli E A, Perathoner S. Catalysis for COz conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical in- dustries [ J ]. Energy Environ. Sci. , 2013, 6 ( 6 ) : 1711. 被引量:1
  • 4Schmeier T J, Dobereiner G E, Crabtree R H, et al. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst [J]. J. Am. Chem. Soc. , 2011, 133(24) : 9274. 被引量:1
  • 5Motokura K, Kashiwame D, Takahashi N, et al. Highly active and selective catalysis of copper diphos-phine complexes for the transformation of carbon diox- ide into silyl formate [J]. Chem. Eur. J. , 2013, 19 (30) : 10030. 被引量:1
  • 6Huang F, Zhang C G, Jiang J L, et al. How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study [J]. Inorg. Chem., 2011, 50(8) : 3816. 被引量:1
  • 7Angamuthu R, Byers P, Lutz M, et al. Electrocatalyt- ic CO2 conversion to oxalate by a copper complex [ J ]. Science, 2010, 327(5963): 313. 被引量:1
  • 8Tsutsumi Y, Yamakawa K, Yoshida M, et al. Bifunc- tional organoeatalyst for activation of carbon dioxide and epoxide to produce cyclic carbonate: betaine as a new catalytic motif [J]. Org. Lett. , 2010, 12(24) : 5728. 被引量:1
  • 9Bhavani A G, Kim W Y, Lee J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane [J]. ACS Catal. , 2013, 3(7) : 1537. 被引量:1
  • 10Sarusi I, Fodor K, Baan K, et al. CO2 reforming of cn4 on doped Rh/A1203 catalysts [J]. Catal. Today, 2011, 171(1): 132. 被引量:1

同被引文献31

  • 1Wildgoose G, Banks C, Compton R. Metal nanoparti-cles and related materials supported on carbon nano-tubes :methods and applications [ J ]. Small,2006 , 2(2): 182. 被引量:1
  • 2Liu H,Song C, Zhang L, et at. A review of anode ca-talysis in the direct methanol fuel cell [ J]. J. PowerSources, 2006, 155(2) : 95. 被引量:1
  • 3Meyer J. Carbon sheets an atom thick give rise to gra-phene dreams [J]. Science, 2009, 324(5929) : 875. 被引量:1
  • 4Lee C, Wei X, Kysar J W, ei al. Measurement of theelastic properties and intrinsic strength of monolayergraphene [ J]. Science, 2008 , 321(5887) : 385. 被引量:1
  • 5Biswas C, Lee Y H, Graphene versus carbon nano-tubes in electronic devices [ J ]. Adv. Funct. Mater.,2011, 21(20): 3806. 被引量:1
  • 6Novoselov K,Geim A,Morozov S,et al. Two - di-mensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065) : 197. 被引量:1
  • 7Machado B F, Serp P. Graphene - based materials forcatalysis [J]. Catal. ScL Technol. , 2012,2(1); 54. 被引量:1
  • 8Li Y, Tang L,Li J. Preparation and electrochemicalperformance for methanol oxidation of Pt/graphenenanocomposites [ J ]. Electrochem. Commun.,2009,11(4) : 846. 被引量:1
  • 9Li Y, Gao W, Ci L, et al. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanolelectro - oxidation [ J]. Carbon, 2010,48(4) : 1124. 被引量:1
  • 10Stankovich S, Dikin D, Dommett G,et al. Graphene-based composite materials [ J]. Nature, 2006,442(7100) : 282. 被引量:1

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部