期刊文献+

基于累积塑性破坏的船体缺口板低周疲劳裂纹萌生寿命研究 被引量:1

Research on Low-cycle Fatigue Crack-Initiation Life of Ship Notched Plate Based on Accumulative Plastic Damage
原文传递
导出
摘要 结合循环应力-应变曲线,获得N次载荷循环后船体缺口板累积塑性应变值,根据Neuber公式和Manson-Coffin方程建立了循环载荷下基于累积递增塑性破坏的船体缺口板低周疲劳裂纹萌生寿命的计算模型。通过有限元计算讨论了循环载荷的平均应力、应力幅值、应力比及尺寸效应的影响;所建立模型的计算结果与已有实验结果基本吻合;对合理预估单轴循环载荷下缺口板的低周疲劳裂纹萌生寿命以及提高船舶安全性有重要意义。 An analytical model for predicting low-cycle fatigue (LCF) crack-initiation life of ship notched plate is proposed on the basis of accumulative plastic damage in this paper. In this study, the focuses is to get the accumulative plastic strain after N time's constant amplitude cyclic loading, stress-strain curve at local zone and relevant plastic parameters of ship notched plate under cyclic loading. Combined with the Neuber's Formula, the Manson-Coffin Equation is implemented to predict the LCF crack-initiation life of ship notched plates. A numerical model is conducted to reflect the influences of plate size, the mean stress, stress amplitude and stress ratio on the LCF crack initiation of ship notched plate. It is concluded from the comparison that the results by presented calculation model correlate well with the existing experimental ones and are capable of predicting the low-cycle fatigue crack-initiation life of ship notched plate under cyclic axial in-plane loading.
出处 《船舶工程》 北大核心 2015年第9期76-80,85,共6页 Ship Engineering
基金 国家自然科学基金面上项目(51479153) 中央高校基本科研业务费专项资金资助项目(2015-yb-004)
关键词 船体缺口板 萌生寿命 累积塑性 低周疲劳 损伤累积理论 ship notched plate crack-initiation life accumulative plastic low cycle fatigue accumulative damage theory
  • 相关文献

参考文献2

二级参考文献18

  • 1杨显杰,高庆,蔡力勋,陈旭,袁珩.42CrMo钢在非比例循环加载下的塑性流动分析[J].金属学报,1995,31(4). 被引量:4
  • 2蔡力勋,杨显杰.40钢非比例循环塑性行为研究[J].固体力学学报,1996,17(1):58-64. 被引量:2
  • 3Sadananda K, Vasudevan AK, Holtz RL Lee EU. Analysis of overload effects and related phenomena[J]. International Journal of Fatigue, 1999, 21: S233-S246. 被引量:1
  • 4Duran J A R, Castro J T P, Filho J C P. Fatigue crack propagation prediction by cyclic plasticity damage accumulation models [J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26: 137-150. 被引量:1
  • 5Noroozi A H, Glinka G, Lambert S. A two-parameter driving force for fatigue crack growth analysis[J]. International Journal of Fatigue, 2005, 27: 1277-1296. 被引量:1
  • 6Stoychev S, Kujawski. Analysis of crack propagation using AK and Kmax [J]. Intemational Journal of Fatigue, 2005, 27: 1425- 1431. 被引量:1
  • 7Castro J T P, Meggiolaro M A, Miranda A C O. Singular and non-singular approaches for predicting fatigue crack growth be- havior[J]. International Journal of Fatigue, 2005, 27: 1366-1388. 被引量:1
  • 8Westergaard H M. Bearing pressures and cracks[J]. Journal of Applied Mechanics, 1939, 6: A49-A53. 被引量:1
  • 9Glinka G, Buczynski A. Multiaxial stress-strain notch analysis[M]. In: Kalluri S, et al, editors. Multiaxial Fatigue and Defor- mation, ASTM STP 1387. Philadelphia: American Society for Testing and Materials, 2000: 82-98. 被引量:1
  • 10Creager M, Paris P C. Elastic field equations for blunt cracks with reference to stress corrosion cracking[J]. International Jour- nal of Fatigue, 1967, 3: 247-251. 被引量:1

共引文献6

同被引文献19

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部