期刊文献+

基于尺度乘积的X射线焊缝区域提取算法研究 被引量:4

Weld Region Extraction in Radiographic Image Based on Scale Multiplication Technique
下载PDF
导出
摘要 焊缝缺陷自动检测是保证焊接质量的重要环节,而焊缝区域的提取是焊缝缺陷特征提取与焊缝缺陷识别的基础。该文提出了一种基于尺度乘积的X射线焊缝区域提取算法。该方法首先对图像按行取样获得行灰度曲线,再利用最小二乘直线拟合的方法将不同尺度下拟合直线的斜率乘积代替梯度算子,并进行非极大值抑制得到边缘点。对图像每行进行同样的操作,得到整个焊缝的边缘,从而提取出焊缝区域。实验表明,该方法能显著抑制噪声的干扰、提高边缘检测的准确率,在噪声多、边缘模糊的X射线图像中能取得比主动轮廓模型和模糊核聚类更好的效果。 Automatic detection of weld defects is an important part of the welding quality assurance, while the extraction of weld region is the base of feature extraction and defects recognition. In order to accurately extract the weld region, this paper presents an X-ray weld region extraction algorithm based on scale multiplication. In this method, the grayscale plot is obtained by line scan of the image, and then instead of a gradient operator, the product of slopes of fitting lines in different scales, which are computed by the least squares linear fit, are used for non-maxima suppression to get edge points. Applying the same operation to each line, we can obtain the whole picture of the weld edges to extract the weld region. Experimental results show that this method, in X-ray images with noise and blurred edge, can significantly suppress noise interference, improve the accuracy of edge detection, and can acquire better effect than the implicit active contours and the kernel fuzzy c-means.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期737-742,共6页 Journal of University of Electronic Science and Technology of China
基金 四川省科技支撑计划(2013GZX0155,2013GZX0165)
关键词 边缘检测 灰度曲线 最小二乘直线拟合 尺度乘积 焊缝区域提取 edge detection grayscale plot least squares linear fitting scale multiplication weld region extraction
  • 相关文献

参考文献12

  • 1周正干,滕升华,江巍,李和平.焊缝X射线检测及其结果的评判方法综述[J].焊接学报,2002,23(3):85-88. 被引量:34
  • 2KUO H C, WU L J. All image tracking system for welded seams using fuzzy logic[J]. Journal of Materials Processing Technology, 2002, 120(1): 169-185. 被引量:1
  • 3孔萌,陈善本,林涛.基于复合边缘检测算子的焊缝边缘提取方法[J].上海交通大学学报,2009,43(5):693-696. 被引量:10
  • 4MA H, WEI S, SHENG Z, et al. Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding[J]. The International Journal of Advanced Manufactttring Technology, 2010, 48(9): 945-953. 被引量:1
  • 5WANG Y, SkIN Y, LV P, et al. Detection of line weld defects based on multiple thresholds and support vector machine[J]. NDT & E International, 2008, 41(7): 517-524. 被引量:1
  • 6YAZID H, AROF H. Automated thresholding in radiographic image for welded joints[J]. Nondestructive Testing and Evaluation, 2012, 27(1): 69-80. 被引量:1
  • 7GOUMEIDANCE A B, KHAMADJA M, NACEREDDINE N, et al. Parametric active contour for weld defects boundary extraction in radiographic testing[C]//Eighth International Conference on Quality Control by Artificial Vision. [S.I.]: Society of Photo-optical Instrumentation Engineers, 2007. 被引量:1
  • 8BOUTICHE Y. A region-based model and binary level set function applied to weld defects detection in radiographic images[J]. International Journal of New Computer Architectures and their Applications (IJNCAA), 2011, 1 (1): 236-244. 被引量:1
  • 9V1LAR R, ZAPATA J. Segmentation of weld regions in radiographic images: a knowledge-based efficient solution[M]. [S.1.]: Springer Berlin Heidelberg, 2013: 421-430. 被引量:1
  • 10YE Z, FANG G, CHEN S, et al. A robust algorithm for weld seam extraction based on prior knowledge of weld seam[J]. Sensor Review, 2013, 33(2): 125-133. 被引量:1

二级参考文献13

共引文献42

同被引文献18

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部