摘要
本文研究多重工作休假的Geom/Geom/(Geom/Geom)/H双输入排队的问题.利用Markov链及矩阵几何解的方法,获得所研究的模型,建立稳态概率满足的方程组,进而推导出稳态队长分布、服务台消失的概率,推广了排队系统的模型及相关的结果.
In this paper, we introduce multiple working vacation into the Ceom/Ceom/(Geom/ Geom)/H double input queue system and describe the research models detailedly. Taking the Markov chain as the theoretical basis, we get one-step state transition probability matrix. And the steady-state probability equations are obtained by Markov process method. The method of blocking matrix is used to derive the obvious iterative formula of the steady-state probability vectors. We use matrix geometric solution and derive the qucue length distribution and server disappear probability and other performance index.
出处
《应用数学》
CSCD
北大核心
2015年第4期723-728,共6页
Mathematica Applicata
基金
太原市科技项目人才专项基金项目(120247-28)
关键词
双输入排队
多重工作休假
多服务台
矩阵几何解
Dual input queue
Multiple working vacation
Multi-server
Matrix geometric solution