期刊文献+

Geometrical entropy approach for variable structure multiple-model estimation 被引量:3

Geometrical entropy approach for variable structure multiple-model estimation
原文传递
导出
摘要 The variable structure multiple-model(VSMM) estimation approach, one of the multiple-model(MM) estimation approaches, is popular in handling state estimation problems with mode uncertainties.In the VSMM algorithms, the model sequence set adaptation(MSA) plays a key role.The MSA methods are challenged in both theory and practice for the target modes and the real observation error distributions are usually uncertain in practice.In this paper, a geometrical entropy(GE) measure is proposed so that the MSA is achieved on the minimum geometrical entropy(MGE) principle.Consequently, the minimum geometrical entropy multiple-model(MGEMM) framework is proposed, and two suboptimal algorithms, the particle filter k-means minimum geometrical entropy multiple-model algorithm(PF-KMGEMM) as well as the particle filter adaptive minimum geometrical entropy multiple-model algorithm(PF-AMGEMM), are established for practical applications.The proposed algorithms are tested in three groups of maneuvering target tracking scenarios with mode and observation error distribution uncertainties.Numerical simulations have demonstrated that compared to several existing algorithms, the MGE-based algorithms can achieve more robust and accurate estimation results when the real observation error is inconsistent with a priori. The variable structure multiple-model(VSMM) estimation approach, one of the multiple-model(MM) estimation approaches, is popular in handling state estimation problems with mode uncertainties.In the VSMM algorithms, the model sequence set adaptation(MSA) plays a key role.The MSA methods are challenged in both theory and practice for the target modes and the real observation error distributions are usually uncertain in practice.In this paper, a geometrical entropy(GE) measure is proposed so that the MSA is achieved on the minimum geometrical entropy(MGE) principle.Consequently, the minimum geometrical entropy multiple-model(MGEMM) framework is proposed, and two suboptimal algorithms, the particle filter k-means minimum geometrical entropy multiple-model algorithm(PF-KMGEMM) as well as the particle filter adaptive minimum geometrical entropy multiple-model algorithm(PF-AMGEMM), are established for practical applications.The proposed algorithms are tested in three groups of maneuvering target tracking scenarios with mode and observation error distribution uncertainties.Numerical simulations have demonstrated that compared to several existing algorithms, the MGE-based algorithms can achieve more robust and accurate estimation results when the real observation error is inconsistent with a priori.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1131-1146,共16页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.61427808, 61333009 and 61174024)
关键词 Geometrical entropy Maneuvering target tracking Model sequence setadaptation Multiple-model estimation Particle filter Geometrical entropy Maneuvering target tracking Model sequence setadaptation Multiple-model estimation Particle filter
  • 相关文献

参考文献1

二级参考文献31

  • 1Bar-Shalom Y, Li XR. Estimation and tracking: principles, techniques, and software. Boston (MA): Artech House; 1998. 被引量:1
  • 2Jo K, Chu K, Sunwoo M. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning. IEEE Trans Intell Transp Syst 2012;13(1):329-3. 被引量:1
  • 3Li XR, Bar-Shalom Y. Multiple-model estimation with variable structure. IEEE Trans Autom Control 1996;41(4):478- 93. 被引量:1
  • 4Magill DT. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans Autom Control 1965;10(4):434-9. 被引量:1
  • 5Lainiotis DG. Optimal adaptive estimation: structure and param- eter adaptation. IEEE Trans Autom Control 1971;16(2):160-70. 被引量:1
  • 6Bar-Shalom Y, Blair WD, editors. Multitarget multisensor tracking: applications and advances. Norwood (MA): Artech House; 2000. 被引量:1
  • 7Blom HAP, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans Autom Control 1988;33(8):780-3. 被引量:1
  • 8Bar-Shalom Y, Willett PK, Tian X. Tracking and data .fusion. Storrs (CT): YBS; 2011. 被引量:1
  • 9Tudoroiu N, Khorasani K. Satellite fault diagnosis using a bank of interacting Kalman filters. IEEE Trans Aerosp Electron Syst 2007;43(4):133450. 被引量:1
  • 10Hayashi Y, Tsunashima H, Marumo Y. Detection of railway vehicles using multiple model approach, ln: International joint conference on SICE-ICASE; 2006. p. 2812-7. 被引量:1

共引文献2

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部