期刊文献+

电力领域应急预案的流式实体识别 被引量:1

Streaming Entity Resolution of Emergency Plan in Electric Field
下载PDF
导出
摘要 随着电力系统发展的愈发迅速,在将网络中电力系统应急预案进行集成时,形成了应急预案数据流。如何有效存储及优化应急预案的流数据库,成为了电力领域研究热点。结合流数据及应急预案特点,对应急预案流数据采用时段计数处理机制,提出流式实体识别(ER)算法及其结合哈希与多线程的改进算法,建立新型的应急预案二级存储管理模型。为电力领域应急预案流数据的进一步研究提供平台基础。 With the increasingly development of electric power system,there forms streaming data of emergency plan while integrating the emergency plan on the internet.How to store and optimize the streaming database of emergency plan effectively becomes research hotspot of electric field.According to the characteristics of streaming data and emergency plan,adopts time-count processing mechanism for streaming data,proposes streaming entity resolution(ER)and its optimization algorithm using hash and multithreading,builds a new two-level storage management model.This provides a platform for further research on streaming data of emergency plan.
作者 张波 党德鹏
出处 《电力学报》 2015年第3期258-262,共5页 Journal of Electric Power
基金 国家自然科学基金(60940032 61073034) 教育部新世纪优秀人才支持计划(NCET-10-0239) 国家科技支撑计划重大项目(2006BAK01A07) 国家科技支撑计划重点项目(2006BAC18B06)
关键词 应急预案 数据集成 流数据 实体识别 emergency plan data integration streaming data Entity Resolution(ER)
  • 相关文献

参考文献12

二级参考文献114

  • 1寇欣.强化对应急准备和响应的要求[J].中国质量认证,2005(7):47-49. 被引量:1
  • 2BABCOCK B, BABU S, DATAR M. Model and issues in data stream systems[ C]//Proc of the 21st ACM SIGMOD International Conference on Principles of Database Systems. New York: ACM Press, 2002 : 1-16. 被引量:1
  • 3QIN Shou-ke, QIAN Wei-ning, ZHOU Ao-ying. Approximately pro- cessing multi-granularity aggregate queries over a data stream [ C ]//Proc of the 22nd International Conference on Data Engineering. Washington DC : IEEE Computer Society ,2006:468-472. 被引量:1
  • 4MUTHUKRISHNAN S. Data streams: algorithms and applications [C]//Proe of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. 2003:413. 被引量:1
  • 5MARON M E, KUHNS J L. On relevance, probabilistic indexing and information retrieval [ J ]. Journal of the ACM, 1960,7 ( 3 ) : 216- 244. 被引量:1
  • 6MURTHY S K. Automatic construction of decision trees from data: a multi-disciplinary survey [ J ]. Data Mining and Knowledge Discovery, 1998,2 (4) : 345- 389. 被引量:1
  • 7CARUANA R,NICULESCU-MIZIL A. An empirical comparison of supervised learning algorithms [ C ]//Proc of the 23rd International Conference on Machine Learning. 2006 : 161-168. 被引量:1
  • 8DOMINGOS P, HULTEN G. Mining high-speed data streams[ C ]// Proc of Conference on Knowledge Discovery and Data Mining. New York : ACM Press,2000:71 - 80. 被引量:1
  • 9JIN Ruo-ming, AGRAWAL G. Efficient decision tree construction on streaming data[ C ]//Proc of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2003:571-576. 被引量:1
  • 10KLINKENBERG R. Learning drifting concepts: example selection vs. example weighting[ J]. Intelligent Data Analysis,2004,8 (3) :281 - 300. 被引量:1

共引文献293

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部