期刊文献+

基于Hadoop协同过滤的电商数据推荐研究 被引量:5

下载PDF
导出
摘要 随着电子商务的快速发展,数据推荐技术在电子商务系统中作用越来越重要。提出了一种新型的基于Hadoop协同过滤的电商数据推荐算法,并采用这个算法开发了商品数据处理系统。系统可根据用户的兴趣、对商品的偏爱程度以及对价格的接受范围,进行优化选择后推送用户感兴趣的商品。实验证明,该算法在Hadoop平台上能够有效提高商品数据推荐的准确率和计算效率,从而提高用户购买量。
出处 《软件导刊》 2015年第10期118-120,共3页 Software Guide
基金 广西大学2011级大学生实验技能和科技创新能力训练基金项目(SYJN20130708)
  • 相关文献

参考文献3

二级参考文献29

  • 1Herlocker J L,Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering [ C]// SIGIR 99:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Re- trieval. 1999 : 230-237. 被引量:1
  • 2Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C] // Pro- ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. 1994:175-186. 被引量:1
  • 3Adomavieius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: a Survey of the State-of-the-art and Possible Extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (6) : 734-749. 被引量:1
  • 4Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International World Wide Web Conference. New York, 2001 : 285-295. 被引量:1
  • 5Breese J, Hecherman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 98). 1998:43-52. 被引量:1
  • 6Wang J, Vries A, Reinders M. Unifying User-based and Item- based Collaborative Filtering Approaches by Similarity Fusion [C]//SIGIR 06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2006 :501-508. 被引量:1
  • 7Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating 'Word of Mouth' [C] // Proceeding of the Con- ference on Human Factors in Computing Systems. 1995:210-217. 被引量:1
  • 8Miller B N, Albert I, Lain S K, et al. MovieLens Unplugged.. Ex- periences with an Occasionally Connected Recommender System [C]// IUI 03: Proceedings of the 8th International Conference on Intelligent User Interfaces New York, 2003:263-266. 被引量:1
  • 9Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 10Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1

共引文献617

同被引文献38

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部