期刊文献+

基于二值特征和结构化输出支持向量机的目标快速跟踪算法 被引量:2

Fast algorithm for object tracking based on binary feature and structured output support vector machine
下载PDF
导出
摘要 复杂场景下基于判别式分类器的目标跟踪通常采用复杂的外观表示模型以提高跟踪精度,但影响了算法的实时性。为此,提出一种基于半色调的二值特征来描述目标的外观,在此基础上对结构化输出支持向量机(SVM)的核函数进行改进,实现了判别模型的快速更新和判别;同时提出一种基于分块匹配的判别模型更新策略,保证了跟踪过程中样本的可靠性。在Benchmark数据集上进行的测试实验中,与压缩跟踪(CT)算法、跟踪学习检测(TLD)算法和核化的结构化输出跟踪(Struck)算法相比,在跟踪速度上,该算法分别提高了0.2倍、4.6倍、5.7倍;在跟踪精度上,当重叠率阈值取0.6时,该算法的成功率达到0.62,而其他三种算法的成功率均在0.4以下,当位置误差阈值取10时,该算法的精度为0.72,而其他三种算法精度均小于0.5。实验结果表明该算法在发生光照变化、尺度变化、严重遮挡和突变运动等复杂情况下均具有很好的鲁棒性和实时性。 The object tracking algorithm based on discriminative classifier usually adopts complex appearance model to improve the tracking precision in complex scenes, which relatively influences the real-time performance of tracking. To solve this problem, a binary feature based on halftone was proposed to describe the object appearance and the kernel function of structured output Support Vector Machine (SVM) was improved, so as to realize fast updating and discriminating of discriminative model. In addition, a discriminative model updating strategy based on part matching was proposed, which can ensure the reliability of the training samples. In the experiments conducted on Benchmark, compared with the three algorithms including Compressive Tracking (CT), Tracking Detection Learning (TLD) and Structured Output Tracking with Kernels (Struck), the proposed algorithm had better performance in tracking speed with the increases of 0.2 times, 4.6 times and 5.7 times respectively. On the aspect of tracking precision, when overlap rate threshold was set to 0, 6, the success rate of the proposed algorithm reached 0.62, which was higher than the success rates of the other three algorithms that were all less than 0.4; when the position error threshold was set to 10, the precision of the proposed algorithm reached 0.72, while the precisions of the other three algorithms were all less than 0.5. The experimental results show that the proposed algorithm obtains good robustness and real-time performance in complex scenes, such as illumination change, scale change, full occlusion and abrupt motion.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2980-2984,共5页 journal of Computer Applications
关键词 目标跟踪 结构化输出 二值特征 支持向量机 判别模型 object tracking structured output binary feature Support Vector Machine (SVM) discriminative model
  • 相关文献

参考文献15

  • 1庄东晔,张冬明,张勇东,李锦涛.随机亮度差量化的二进制特征描述[J].中国图象图形学报,2014,19(4):630-636. 被引量:3
  • 2XU X, TIAN L, ZHOU J. OSRI: a rotationally invariant binary de- scriptor[ J]. IEEE Transactions on Image Processing, 2014, 23 (7) : 2983 - 2995. 被引量:1
  • 3REN S, CAO X, WEI Y, et al. Face alignment at 3000 fps via re- gressing local binary features[ C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattem Recognition. Piscat- away: IEEE Press, 2014: 1685- 1692. 被引量:1
  • 4LU J, LIONG V, ZHOU X, et al. Learning compact binary face de- scriptor for face recognition[ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2014, 99(1) : 1 - 16. 被引量:1
  • 5LI X, SHEN C H, DICK A, et al. Learning compact binary codes for visual tracking[ C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013:2419-2426. 被引量:1
  • 6覃兵,田军,查宇飞,张立朝,黄宏图.利用二值描述符的实时目标跟踪算法[J].西安电子科技大学学报,2015,42(5):168-174. 被引量:4
  • 7AVIDAN S. Support vector tracking[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2004, 26 ( 8 ) : 1064 - 1072. 被引量:1
  • 8GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised online boosting for robust tracking[ C]// Proceedings of the ECCV 2008. Berlin: Springer-Verlag, 2008:234-247. 被引量:1
  • 9BABENKO B, YANG M, BELONGIE S. Robust object tracking with online multiple instance learning[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8) : 1619 - 1632. 被引量:1
  • 10HARE S, SAFFARI A, TORR P H S. Struck: structured output tracking with kernels[ C]//Proceedings of the 2011 IEEE Interna- tional Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011:263 -270. 被引量:1

二级参考文献33

  • 1Lowe G. Distinctive image features from scale-invariant keypoints IJl. International Journal of Computer Vision, 2004, 60: 91- 110. 被引量:1
  • 2Bay H, Tuytelaars T, Van G. SURF : speeded up robust features [ C ]. //Proceedings of the 9th European Conference on Compu- ter Vision Graz. Berlin: Springert, 2006, 3951:404-417. 被引量:1
  • 3Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representa- tion for local image descriptors [ C ]//Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pattern Recog- nition. Washington DC: IEEE, 2004, 2: 506-513. 被引量:1
  • 4Indyk P, Motwani R. Approximate nearest neighbors: towards re- moving the curse of dimensionality [ C ]//The 30th Annual ACM Symposium on Theory of Computing. Dallas, USA: ACM, 1998 : 604-613. 被引量:1
  • 5Weiss Y, Torralba A B, Fergus R. Spectral hashing[ J]. Neural Information Processing Systems, 2008 : 1753-1760. 被引量:1
  • 6Kulis B, Grauman K. Kernelized locality-sensitive hashing for scalable image search [ C ]//Proceedings of the 12th IEEE Inter- national Conference on Computer Vision. Kyoto, Japan : IEEE, 2009 : 2130-2137. 被引量:1
  • 7Raginsky M, Lazebnik, S. Locality-sensitive binary codes from shift-invariant kernels [ J ]. The Neural Information Processing Systems, 2009, 23 : 1509-1517. 被引量:1
  • 8Wang J, Kumar S, Chang S F. Semi-supervised hashing for large-scale search [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34:2393-2406. 被引量:1
  • 9Strecha C, Bronstein A, Bronstein M, Fua P. LDAHash : im- proved matching with smaller descriptors [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34:66-78. 被引量:1
  • 10Zhou W, Lu Y, Li H, et al. Scalar quantization for large scale image search [ C ]//Proceedings of the 20th ACM International Conference on Multimedia. Nara, Japan: ACM, 2012 : 169-178. 被引量:1

共引文献5

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部