期刊文献+

基于密度的轨迹时空聚类分析 被引量:20

Density-Based Spatiotemporal Clustering Analysis of Trajectories
原文传递
导出
摘要 通过轨迹聚类分析挖掘物体移动模式的空间分布和时间特征,对于认识运动的形成机制,预测运动的未来发展具有重要的意义。目前,轨迹聚类研究主要关注物体的空间位置变化,时空聚类中时间约束一般只是作为辅助信息,并不真正参与聚类。本文提出基于密度的轨迹时空聚类方法,在聚类过程中同时考虑轨迹包含的时空信息,在空间聚类的基础上提出了轨迹线段时间距离的度量方法和阈值确定原则,对时空邻域密度进行聚类分析,挖掘物体的时空移动模式。实验对南海涡旋轨迹进行时空聚类分析,得到了涡旋典型移动模式的空间分布和时间特征,验证了基于密度的轨迹时空聚类方法的有效性。加入时间约束后,移动通道主要发生缩短、分裂和消失的变化。和空间聚类相比,轨迹时空聚类可有效地划分发生在同一位置不同时间的轨迹,得到的聚类结果更加细化,移动模式更加准确,有利于物体的移动模式做更深入的分析。 Trajectory clustering, which aims to uncover the meaningful spatial distributions and temporal variations of moving objects, is of much importance in understanding potential dynamic mechanisms and predicting future development. However, placing many focuses on locational changes, many studies have made limited use of the time dimension in trajectories. This paper presents a density-based clustering method, which integrates time and space information in identifying significant migrating paths from trajectory datasets. Definition of temporal distances between any line segments decomposed from trajectories as well as the criterion of distance threshold selection is provided in detail. The experiments conducted on ocean eddies in the South China Sea demonstrate the effectiveness of this method in obtaining spatiotemporal migrating patterns. The migrating paths in the results are shortened, or separated into parts, or they turn insignificant as the effect of including time component in density clustering, which reveal more specific movement characteristics in the temporal domain covered by spatial clustering. This advantage facilitates the analysis of objects moving along the same path while displaying distinct time patterns.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第10期1162-1171,共10页 Journal of Geo-information Science
基金 国家自然科学基金项目"基于海洋要素场的涡旋过程数据建模与可视化"(41371378)
关键词 轨迹聚类 时空数据挖掘 涡旋 南海 trajectory clustering spatiotemporal data mining ocean eddies the South China Sea
  • 相关文献

参考文献23

  • 1Han J,Lee J-G,Kamber M.An overview of clustering methods in geographic data analysis[A].In Miller H J,Han J.Geographic data mining and knowledge discovery[M].London:CRC Press,2009:149-187. 被引量:1
  • 2Jeung H,Yiu M,Jensen C.Trajectory pattern mining[A].In Zheng Y,Zhou X.Computing with spatial trajectories[M].New York:Springer,2011:143-177. 被引量:1
  • 3Dykes J A,Mountain D M.Seeking structure in records of spatio-temporal behaviour:visualization issues,efforts and applications[J].Computational Statistics & Data Analysis,2003,43(4):581-603. 被引量:1
  • 4Camargo S J,Robertson A,Gaffney S,et al.Cluster analysis of western North Pacific tropical cyclone tracks[C].The 26th conference on hurricanes and tropical meteorology,2004:250-251. 被引量:1
  • 5Lee J-G,Han J,Whang K-Y.Trajectory clustering:a partition-and-group framework[C].Proceedings of the the 2007 ACM SIGMOD international conference on Management of data,2007:593-604. 被引量:1
  • 6Benkert M,Djordjevic B,Gudmundsson J,et al.Finding Popular Places[M].In:Tokuyama T.Algorithms and Computation.Berlin,Heidelberg:Springer,2007:776-787. 被引量:1
  • 7Shaw S-L,Yu H,Bombom L S.A space-time GIS approach to exploring large individual-based spatiotemporal datasets[J].Transactions in GIS,2008,12(4):425-441. 被引量:1
  • 8Shoshany M,Even-Paz A,Bekhor S.Evolution of clusters in dynamic point patterns:with a case study of Ants' simulation[J].International Journal of Geographical Information Science,2007,21(7):777-797. 被引量:1
  • 9D'auria M,Nanni M,Pedreschi D.Time-focused density-based clustering of trajectories of moving objects[C].Proceedings of the Workshop on Mining Spatio-Temporal Data(MSTD-2005),2005:14. 被引量:1
  • 10Nanni M,Pedreschi D.Time-focused clustering of trajectories of moving objects[J].Journal of Intelligent Information Systems,2006,27(3):267-289. 被引量:1

二级参考文献2

共引文献2

同被引文献158

引证文献20

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部