摘要
针对无限域波传播问题的频域解析动力刚度关系,提出一种新的连分式逼近来代替频域动力刚度,建立了基于动力刚度连分式的高精度时域人工边界条件。该边界条件能够与有限元法无缝结合,通过引入一定数量的辅助变量,避免频域人工边界条件直接转化到时域内高计算和存储成本的卷积运算。数值算例表明,该边界条件具有较高的计算精度和良好的稳定性。
For the analytical frequency-domain dynamic stiffness relation of wave propagation in infinite domain,a new continued fraction is proposed to approximate the dynamic stiffness. The high-accuracy time-domain artificial boundary condition is developed based on the proposed continued fraction. The artificial boundary condition can be seamlessly integrated with the finite element method. By introducing a number of auxiliary variables when the artificial boundary condition based on analytical solution in frequency domain is transformed directly into time domain,the time convolution that is high computation and storage costs can be avoid. Numerical examples show that the proposed artificial boundary condition has high accuracy and good stability.
出处
《地震工程与工程振动》
CSCD
北大核心
2015年第4期21-26,共6页
Earthquake Engineering and Engineering Dynamics
基金
国家"973"计划项目(2015CB057902)
国家自然科学基金项目(51421005
51322813)
关键词
波传播
有限元法
人工边界条件
连分式
高精度
wave propagation
finite element method
artificial boundary condition
continued fraction
high accuracy