摘要
针对模糊非确定现象的评价问题,提出了模糊数学与中介真值理论相结合的评价方法。模糊数学评价法和中介真值理论的方法都是从量的角度研究和处理模糊现象。但是,模糊数学评价法注重应用而缺乏系统理论的支持,其模糊合成算子在多因素情况下很难确定,且度量值域局限于[0,1];中介真值理论的评价方法在处理因素较多且权重难以细分的情况时,也具有一定的局限性。因此,将模糊数学与中介真值相结合,将模糊数学的评价方法运用到二级指标的评定,将中介真值理论的评价方法运用到一级指标的综合评定,由此确定最佳选择方案。最后,将该方法运用于软件质量评估,并分别与模糊数学评价法和中介真值理论的评价方法相比较,结果表明该方法是可行的、合理的,并具有一定优势。
Aiming at the evaluation of fuzzy and non-deterministic phenomenon, we propose an evalu- ation method based on fuzzy mathematies and the medium truth theory. Both the fuzzy mathematics method and the medium truth theory method study and deal with the fuzzy phenomenon from the angle of quantity. But fuzzy synthetic operator of the fuzzy mathematics method is difficult to determine when there are multiple factors, and the measurement range limit in [0,1]. The medium truth theory method also has some limitations in dealing with the situation of multiple factors when evaluate the secondary in- dicators. Therefore, we combine the fuzzy mathematics method and the medium truth theory method: u- sing the former to evaluate the secondary indicators, and the latter for the first indicators, thus the best option is obtained. Finally, we apply the proposed method to software quality evaluation and compare its results with those of the fuzzy mathematics method and the medium truth theory method, Test results show that our method is feasible and reasonable, and has certain advantages.
出处
《计算机工程与科学》
CSCD
北大核心
2015年第9期1676-1681,共6页
Computer Engineering & Science
基金
国家973计划资助项目(2014CB744900)
南京航空航天大学研究生创新基地开放基金资助项目(kfjj201460)
关键词
模糊数学
中介真值理论
度量值域
指标体系
质量度量
fuzzy mathematics
medium truth theory
measurement range
indicator system
quality measures