期刊文献+

一种基于SWT面向RGB-D图像的高效字符检测算法 被引量:2

A High Performance Text Detection System Based on SWT for RGB-D Image
下载PDF
导出
摘要 自然场景中的字符识别有很多有意义的应用,比如机器人的自动导航,场景中文字的即时翻译等。深度相机在机器人以及可穿戴设备中已经有较为广泛的应用,而深度信息是否能辅助字符检测还没有被研究。一种基于SWT(Stroke Width Transform)的面向RGB-D图像的字符检测系统在这里被介绍,该算法利用场景三维结构和字符分布特征来优化SWT进行字符检测。虽然利用深度信息限制了该项研究的应用领域,很多应用仍然能够从该项研究中获益:比如携带Kinect的机器人的自动导航,增强现实眼镜Hololens的即时翻译等等。实验证明通过深度信息的辅助能够显著地提高基于SWT字符检测系统的性能。 Automatic detection and recognition of text in the natural scene is a prerequisite for a couple of applications,such as automatic robot navigation and instant scene text translation system.The RGB-D camera has wildly used in mobile robot and wearable device,whether depth can benefit text detection,however,has not been investigated deeply.A text detection system based on SWT using RGB-D image is introduced here,and depth Channel of RGB-D image and distribution of text are used to optimize the performance of SWT.Even though the dependency of Depth information would limit the application,many applications still can benefit from this research,such as automatic navigation of robot equipped with Kinect.and instant translation system of Holo Lens.The experiment result shows that the depth channel indeed can promote the performance of SWT text detection system.
出处 《微型电脑应用》 2015年第9期33-36,5,共4页 Microcomputer Applications
基金 国家自然科学基金面上项目(61175036)
关键词 字符检测 笔画宽度变换 RGB—D图片 字符分布 Text Detection Stroke Width Transform RGB-D Image Distribution of Text
  • 相关文献

参考文献6

  • 1Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transfoma[C],Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 2963-2970. 被引量:1
  • 2Lai K, Bo L, Ren X, et al. Detection-based object labeling in 3d scenes[C],Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012: 1330-1337. 被引量:1
  • 3Liu J, Liu Y, Cui Y, et al. Real-time human detection and tracking in complex environments using single RGBD camera[C],lCIE 2013: 3088-3092. 被引量:1
  • 4Neumann L, Matas J. A method for text localization and recognition in real-world images[M],Computer Vision ACCV 2010. Springer Berlin Heidelberg, 2011: 770-783. 被引量:1
  • 5欧新良,匡小兰,倪问尹.三维散乱点云分割技术综述[J].湖南工业大学学报,2010,24(5):45-49. 被引量:14
  • 6Lucas S M, Panaretos A, Sosa L, et al. ICDAR 2003 robust reading competitions[C],2003 12th International Conference on Document Analysis and Recognition. IEEE Computer Society, 2003, 2: 682-682. 被引量:1

二级参考文献17

  • 1肖春霞,冯结青,缪永伟,郑文庭,彭群生.基于Level Set方法的点采样曲面测地线计算及区域分解[J].计算机学报,2005,28(2):250-258. 被引量:16
  • 2柯映林,单东日.基于边特征的点云数据区域分割[J].浙江大学学报(工学版),2005,39(3):377-380. 被引量:36
  • 3董明晓,郑康平,姚斌.曲面重构中点云数据的区域分割研究[J].中国图象图形学报(A辑),2005,10(5):575-578. 被引量:17
  • 4Yokoya N, Levine M D. Range Image Segmentation Based on Differential Geometry: A Hybrid Approach[J]. IEEE Transactions on, Pattern Analysis and Machine Intelligence, 1997, 11(6): 643-649. 被引量:1
  • 5Yamazaki I, Natarajan V, Bai Z, et al. Segmenting Point Sets[J]. Proc. IEEE Intl. Conf. Shape Modeling and Applications(SMI), 2006(6): 4-13. 被引量:1
  • 6Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, et al. Robust On-Line Computation of Reeb Graphs: Simplicity and Speed[J]. ACM Transactions on Graphics, 2007, 26(3): 58.1-58.9. 被引量:1
  • 7Xu Hui, Gossett Nathan, Chen Bao-quan. Knowledge-Based Modeling of Laser-Scanned Trees[C]//Proceedings of SIGGRAPH' 05 Sketches. NewYork: ACM, 2005: 124. 被引量:1
  • 8Woo H, Kang E, Wang S Y, et al. A New Segmentation Method for Point Loud Data[J]. International Journal of Machine Tools and Manufacture, 2002, 42(2): 167-178. 被引量:1
  • 9Vosselman M G, Gorte B G H, Sithole G, et al. Recogniseing Structure in Laser Scanning Point Clouds[C]// International Archives of Photogrammetry V Remote Sensing and Spatial Information Sciences. Freburg : ISPRS, 2004 : 33-38. 被引量:1
  • 10Besl P J, Jain R C. Segmentation Through Variable-Order Surface Fitting[J]. IEEE Pattern Analysis and Machine Intelligence, 1988, 10(2): 167-192. 被引量:1

共引文献13

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部