期刊文献+

一种基于改进粒子群算法的K-means算法 被引量:2

A K-means algorithm based on the improved particle swarm optimization algorithm
下载PDF
导出
摘要 针对K-means算法对初始聚类中心敏感、算法容易收敛于局部解等问题,运用了增加飞行时间因子的粒子群算法,提高粒子群算法性能.利用改进的粒子群算法与K-means算法相结合,提高了基于粒子群算法的K-means算法性能.数值试验验证了提出算法的收敛性,且最优解的精度优于K-means算法、PSO算法和PSO-K算法. Considering K-means algorithm was sensitive to the initial cluster centers and easy to converge to local solution and other issues, we increased flight time factor to improve particle swarm algorithm performance. The improved particle swarm algorithm and K-means algorithm were combined to improve the performance of K-means algorithm based on particle swarm optimi- zation. Numerical experiments verified the proposed convergence of the algorithm, and the opti- mal solution accuracy was better than K-means algorithm, PSO algorithm and PSO-K algorithm.
出处 《山东理工大学学报(自然科学版)》 CAS 2015年第5期16-20,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61370207)
关键词 K-MEANS算法 粒子群算法 飞行时间因子 PSO-K算法 K-means algorithm PSO algorithm flight time factor PSO-K algorithm
  • 相关文献

参考文献8

  • 1Hartigan J A.Clustering Algorithms[M].New York:John Wiley&Sons Inc,1975. 被引量:1
  • 2Jim Z C,Huang T J,Liaw Y C.A fast k-means clustering algorithm using cluster center displacement[J].Pattern Recognition,2009(42):2551-2556. 被引量:1
  • 3Aliasa M F,Isa A M,Suaiman S A,et al.Modified moving kmeans clustering algorithm[J].International Journal of Knowledge-based and Intelligent Engineering Systems,2012(16):79-86. 被引量:1
  • 4Merwe D W,Engelbrecht A P.Data Clustering using Particle Swarm Optimization[C]//Evolutionary Computation,2003:215-220. 被引量:1
  • 5Chen C Y,Fun Y.Particle Swarm Optimization Algorithm and Its Application to Clustering Analysis[J].International Conference on Networks,2004,3(21):789-794. 被引量:1
  • 6Niknam T,Amiri B.An efficient hybrid approach based on PSO,ACO and k-means for cluster analysis[J].Applied Soft Computing,2010(10):183-197. 被引量:1
  • 7Kennedy J,Eberhart R.Particle Swarm Optimization[J].International conference on neural network,1995,4(2):1942-1948. 被引量:1
  • 8Shi Y,Eberhart R.A Modified Particle Swarm Optimizer[C]//International conference on Evolutionary Computation Anchorage,1998:69-73. 被引量:1

同被引文献16

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部