摘要
针对目前光学微球腔的温度控制方法计算繁琐、选用器件复杂,且精确控温时对应温度范围较小的问题,提出了光学微球腔温控封装平台设计方法。该方法采用增量式PID控制策略,通过测温模块三线制Pt100铂电阻和恒流源法进行测温,由制冷片和加热片组成的温度控制模块进行制冷和加热,最后由温度调谐平台进行精确温度控制。仿真测试证明,该方法制冷时温控平台大约需要13~14min达到稳定,温度波动范围为±0.02℃.力口热大约需要15~16min达到稳定,温度波动范围为±0.04℃,温度范围由原来的9~20℃上限提高到35℃,控制精度优于0.1℃。
In view of the complexity of calculating the temperature control method of the optical microsphere cavity, and the problem that the temperature range is smaller, a temperature control package designing method was proposed. This method used an incremental PID control strategy. Through three wire Ptl00 platinum re- sistance temperature measurement module and temperature measuring method of constant current source to measure temperature, using the refrigeration and heating pills temperature control module cool and heat it. Final- ly applying tuning platform for precise temperature control. The simulation tests proved that the method when the cooling thermostat platform takes about 13 -- 14 minutes to stabilize the temperature fluctuation range of +0. 02 ℃, heating takes about 15--16 minutes to stabilize the temperature fluctuation range of + 0. 04 ℃, the temperature range from 9--20 ℃ to maximum 35 ℃. The control accuracy is preciser than 0. 1 ℃. The imple- mentation of microsphere cavity temperature control precision, provides a new method for control of microsphere cavity temperature.
出处
《探测与控制学报》
CSCD
北大核心
2015年第4期77-80,86,共5页
Journal of Detection & Control
基金
国家自然科学基金仪器专项基金项目资助(61127015)
国家自然科学基金项目资助(91123016)
关键词
光学微球腔
温度控制
精密测温
PID控制
单片机
optical microsphere cavity
temperature control
precision temperature measurement
PID control
single-chip microcomputer