摘要
对一类单自由度非光滑动力统进行了研究,应用微分包含理论研究了其沿着分离边界的滑动运动;提出了在分离边界上确定其运动奇异性的扰动方法;借助理论分析和数值仿真对系统擦边周期运动的存在性进行了研究,推导了擦边周期运动存在的条件,并通过数值模拟对其进行了验证.
A single-degree-of-freedom non-smooth dynamical system has been discussed in this pa-per.A methodology for the local singularity of non-smooth dynamical systems is systematically presented,and the sliding dynamics along the separation boundary is investigated by the differen-tial inclusion theory.A perturbation method is introduced to determine the singularity of the slid-ing dynamics on the separation boundary.The conditions of grazing period motions are deduced and the formula is verified by numerical simulation.
出处
《兰州交通大学学报》
CAS
2015年第4期150-156,共7页
Journal of Lanzhou Jiaotong University
基金
国家自然科学基金(11462011
11162007
11161027)
甘肃省自然科学基金(1308RJZA149)
兰州交通大学青年科学基金(2011026)
关键词
非光滑系统
微分包含
局部奇异性
擦边运动
non-smooth dynamical system
differential inclusion
local singularity
grazing motion