期刊文献+

嘀咕网用户领域影响力研究 被引量:1

Research on Field Influence of Digu Users
下载PDF
导出
摘要 社交媒体的快速发展使得人们越来越关注有影响力的用户的行为及其对他人的影响作用。有一些研究也致力于解决社交媒体用户社会影响力的度量问题。但是选取的度量标准一般都涉及微博数、粉丝数等全局性指标,而没有考虑到用户在不同的领域范围内所具有的影响力大小是不同的,所以对用户影响力的度量比较笼统、不具体。以嘀咕网在线用户数据为对象,对用户发布的信息内容进行领域分类,并提出领域影响力的概念及度量方法。经过验证,该方法可以很好地度量用户在不同领域的影响力。研究发现粉丝数等这类度量维度与用户领域影响力不成正相关的关系。 Social media develops rapidly, which makes people pay more attention to the behaviors of influential social media users and the effects to others. Some studies dealt with the measurement of social influence of social media users. However, they usually chose global metrics, such as number of posts and number of fans, rather than other metrics that might consider varied social influences within different fields. So the measurement metrics are general and unspecific. This research chose online data of Digu users as object to study the classifications of users' posts, and proposed the con- cept of field influence and the measurement method. At last, the method was verified by a sample study. The results show that it can be well used to measure users' social influence within different fields. It was also found that the meas- urement metrics such as the number of fans have no positive correlation with user field influence.
出处 《计算机科学》 CSCD 北大核心 2015年第9期66-69,共4页 Computer Science
基金 中央高校基本科研业务费专项资金(3132013041)资助
关键词 社交媒体 嘀咕网 领域分类 领域影响力 Social media, Digu website, Field classification, Field influence
  • 相关文献

参考文献14

  • 1Kwak H,Lee C,Park H,et al.What is Twitter,a social network or a news media [C]∥Proceedings of the 19th International Conference on World Wide Web(WWW’10).New York:ACM Press,2010:591-600. 被引量:1
  • 2Ye Shao-zhi,Wu Fel-ix.Measuring message propagation and social influence on twitter.com[J].Social Informatics Lecture Notes in Computer Science,2010,6430:216-231. 被引量:1
  • 3Cha M Y,Haddadi H,Benevenuto F,et al.Measuring user influe-nce in Twitter[C]∥the Milloin Follower Fallacy Proceedings of International AAAI Conference on Weblogs and Social Media(ICWSM’10).Washington,Menlo Park:The AAAI Press,2010:10-17. 被引量:1
  • 4肖宇,许炜,商召玺.微博用户区域影响力识别算法及分析[J].计算机科学,2012,39(9):38-42. 被引量:24
  • 5王菲..一种改进的HITS算法在SNS类网站用户影响力评估系统中的应用[D].吉林大学,2012:
  • 6Weng Jian-shu,Lim Ee-peng,Jiang Jing,et al.TwitterRank:finding topic-sensitive influential twitterers[C]∥Proceedings of the 3rd ACM International Conference on Web Search and Data Mining(WSDM’10).New York:ACM Press,2010:261-270. 被引量:1
  • 7Cataldi M,Mittal N,Aufaure M A.Estimating Donain-basedUser Influence in Social Networks[C]∥Proceedings of SAC’13.Coimbra,Portugal,2013:1957-1962. 被引量:1
  • 8Liu Qing,Peng Geng,Wang Ping.PCA-Based evaluation system of micro-blog influence and an empirical analysis of Sina micro-blog[C]∥Conference on Web Based Business Management(WBM).Shanghai,China,2012:697-700. 被引量:1
  • 9Shuai Xin,Ding Ying,Jerome B,et al.Modeling Indirect Influe-nce on Twitter [J].International Journal on Semantic Web and Information System(IJSWIS),2013,8(4):20-36. 被引量:1
  • 10http://www.36kr.com/tag/klout. 被引量:1

二级参考文献4

共引文献23

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部