期刊文献+

基于均值漂移的改进目标跟踪算法 被引量:1

Improved Object Tracking Algorithm Based on Mean Shift
下载PDF
导出
摘要 在可视化跟踪过程中目标窗经常会由于遮挡、光照、姿势等变化而发生跟踪漂移,影响目标跟踪的准确性和稳定性。为解决该问题,提出一种基于图层的离散域均值漂移算法,在离散域提取基于核的直方图作为目标模型,并对离散分区中的目标函数进行平滑以避免寻优搜索陷入局部极小值,从而提高目标跟踪性能。实验结果表明,与多示例学习算法相比,该算法的跟踪精度提高了16%,具有更好的实时性和鲁棒性。 In the process of visual tracking, target window is always drifted for the illumination light change, deformation and poses change which affect the accuracy and robust tracking performance. To solve this problem, this paper proposes a novel Mean Shift (MS) algorithm based on picture layer which represents target model by the kernel histogram in the discrete fields. In order to improve the tracking performance, the objective function is smoothed to avoid falling into the local minimum in the search procedure. Experimental results show that the tracking precision of proposed algorithm increases by 16% compared with Multiple Instance Learning (MIL) algorithm, and it has better real-time and robustness.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第9期281-285,291,共6页 Computer Engineering
基金 福建省教育厅基金资助项目(JA12263 JB11127) 福州市科技合作基金资助项目(2013-G-86)
关键词 目标跟踪 目标表示 离散域模型 均值漂移 迭代寻优 object tracking object representation discrete domain model Mean Shift( MS ) iterative optimization
  • 相关文献

参考文献15

  • 1Cannons K J,Gryn J M, Wildes R P. Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation : C 3//Proceedings of the 11 th European Conference on Computer Vision. New York,USA : ACM Press ,2010:511-524. 被引量:1
  • 2Liu Tianjian, Zhang Zutao. Adaptive Double Kalman Filter and Mean Shift for Robust Fast Object Track- ing[ J]. International Journal of Advancements in Comoutinz Technololzv .2013.5 ( 6 ) :349-356. 被引量:1
  • 3詹建平,黄席樾,沈志熙,杜长海.基于均值漂移和卡尔曼滤波的目标跟踪方法[J].重庆理工大学学报(自然科学),2010,24(3):76-80. 被引量:8
  • 4Stalder S, Grabner H, van Gool L. Beyond Semi- supervised Tracking: Tracking Should Be as Simple as Detection, but Not Simpler than Recognition [ C ]// Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C. , USA: IEEE Press ,2009 : 1409-1416. 被引量:1
  • 5Ning Jifeng, Shi Wuzhen, Yang Shuqin, et al. Visual Tracking with Online Multiple Instance Learning [ J ]. Image and Vision Computing ,2009,31 ( 11 ) :983-990. 被引量:1
  • 6黄叶珏,郑河荣.基于在线多示例提升随机蕨丛的目标跟踪[J].计算机应用,2012,32(11):3178-3181. 被引量:2
  • 7Kalal Z, Matas J, Mikolajczyk K. P-N Learning: Bootstrapping Binary Classifiers by Structural Con- straints [ C 1//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA :IEEE Press,2010:49-56. 被引量:1
  • 8王守超,李小霞.基于在线学习和结构约束的目标跟踪算法[J].计算机工程,2012,38(18):140-143. 被引量:2
  • 9Szeliski R. Image Alignment and Stitching: A TutorialE J:. Foundations and Trends in Computer Graphics and Vision ,2006,2 ( 1 ) : 101-104. 被引量:1
  • 10Ning Jifeng, Zhang Lei. Robust Mean-shift Tracking with Corrected Background-weighted Histogram E J]. IET Computer Vision,2012,6( 1 ) :62-69. 被引量:1

二级参考文献48

共引文献9

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部