期刊文献+

基于RBF网络的锂电池SOC估算研究 被引量:8

SOC Estimation of Li-battery Based on RBF Neural Network
下载PDF
导出
摘要 电池荷电状态(SOC)估计是电动汽车电池管理系统的重要功能。该文首先对现有的SOC估计方法的优缺点进行分析,在此基础上将径向基函数(RBF)网络的思想应用于SOC估算。通过应用RBF逼近电池电压和SOC之间的关系曲线,得到两者之间的关系模型,实现根据电池电压估计SOC。为了提高RBF逼近的精度,定义代价函数,应用梯度下降算法实时修正RBF网络的参数。仿真结果表明,估计误差能够降低到10-4。 The state of charge(SOC)estimation is an important function of electric vehicle battery management system. By analyzing the advantages and disadvantages of the existing SOC estimation methods,this study introduces the radial basis function(RBF)neural network method to SOC estimation. By fitting the curves between the battery voltage and SOC,the input-output model between them is obtained,and then the SOC estimation value can he obtained through the measured voltage value. In order to improve the fitting precision,the performance function is defined and the gradient descent method is used to update the weight parameters of the RBF neural network in real-time. Simulation results demonstrate that the estimation error can be reduced to 10^-4.
作者 史艳霞 乔佳
出处 《自动化与仪表》 2015年第9期89-92,共4页 Automation & Instrumentation
关键词 电池管理系统 电池荷电状态 径向基函数 代价函数 梯度下降 battery management systems (BMS) state of charge (SOC) radial basis function (RBF) performance function gradient descent method
  • 相关文献

参考文献7

  • 1骆华敏..嵌入式电动汽车电池管理系统设计[D].天津大学,2009:
  • 2J Moreno,M E Orttizar,J W Dixon. Energy-management system for a hybrid electric vehicle,using ultracapacitors and neural networks[J].IEEE Transactions on Industrial Electronics,2006,53 (2) :614-622. 被引量:1
  • 3赵轩,康留旺,汪贵平,马建.基于BP神经网络的SOC估计及铅酸蓄电池特性[J].电源技术,2014,38(5):874-877. 被引量:14
  • 4林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:198
  • 5张立明编著..人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:237.
  • 6陈明等编著..MATLAB神经网络原理与实例精解[M].北京:清华大学出版社,2013:431.
  • 7卢居霄..PHEV用锂离子电池能量系统及SOC估计研究[D].清华大学,2007:

二级参考文献19

  • 1邵海岳,钟志华,何莉萍,钟勇,陈宗璋.电动汽车动力电池模型及SOC预测方法[J].电源技术,2004,28(10):637-640. 被引量:22
  • 2齐智,吴锋,陈实,于卿,王国庆.利用人工神经网络预测电池SOC的研究[J].电源技术,2005,29(5):325-328. 被引量:27
  • 3陈全世,林拥军,张东民.电动汽车用铅酸电池放电特性的研究[J].汽车技术,1996(8):7-11. 被引量:24
  • 4Morio K,Kazuhiro H,Anil P.Battery SOC and distance to empty of the Honda EV Plus[A].Proceedings of the 14th International Electric Vehicle Symposium[C].1997. 被引量:1
  • 5James H A,Alfred T,Barry W J.A battery state of charge indicator for electric wheelchairs[ A].IEEE Transactions on Industrial Electronics[C].1992.10. 被引量:1
  • 6Huet F.A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries [ J ].J Power Sources,1998,70( 1 ):59-69. 被引量:1
  • 7Ehret C,Piller S,Schroer W,et al.State-of-charge determination for Iead-acid batteries in PV-applications[ A].Proceedings of the 16 th European Photovoltaic Solar Energy Conference[ C ].Glasgow:2000. 被引量:1
  • 8Tsutomu Y,Kazuaki S,Ken-Ichiro M.Estimation of the residual capacity of sealed lead-acid batteries by neural network[A].Telecommunications Energy Conference,INTELEC,20th International[ C].1998.210-214. 被引量:1
  • 9Gregory L P.Kalman-filter SOC estimation for LIB cells[A].Proceedings of the 19th International Electric Vehicle Symposium [ C].2002. 被引量:1
  • 10Sabine P,Marion P,Andrees J.Methods for state-of-charge determination and their applications[ J ].J Power Sources,2001,96 ( 1 ):113-120. 被引量:1

共引文献210

同被引文献60

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部