期刊文献+

一种新的基于SLICO改进的GrabCut彩色图像分割算法 被引量:10

Improved color image segmentation of GrabCut algorithm based on SLICO
下载PDF
导出
摘要 针对Grab Cut基于像素建立图模型并进行迭代求解耗时的特点,提出了一种新的基于SLICO改进的Grab Cut分割新算法。首先用户在图像目标区域手动划定一个矩形框,然后在CIELab颜色模型下利用SLICO算法将图像预处理成内部颜色一致的超像素图,利用这些超像素来构建图模型,并用这些超像素均值迭代估计高斯混合模型(GMM)参数。在参数估计中,采用背景区域优化技术,显著减少迭代时的节点数量,并减少矩形框外颜色的干扰,最后利用最小割(min-cut)算法求得图模型的最优分割。实验结果表明了该算法在精度和速度上都有很好的性能。 To overcome the disadvantage of time load of Grab Cut's for the image segmentation that set up the graph model in pixels and processed it iteratively,this paper proposed a fast method based on image segmentation of Grab Cut that was combined with SLICO. Firstly,it calibrated a rectangular box in the target zone manually,then splitted the image into small areas of the similar colors named super pixels with SLICO in CIELab color model. This method used super pixels to set up the graph model and estimated GMMs iteratively. In addition,it used background optimization method to sharply decrease the node count of graph and the influence of colour out of target zone. Finally it used min-cut algorithm to get the optimal segmentation of graph. The experimental results show that the proposed method can significantly improve the performance in terms of accuracy and efficiency.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期3191-3195,共5页 Application Research of Computers
基金 国家交通部科技项目(2011318740240)
关键词 图像分割 GRABCUT SLICO CIELAB 背景区域优化 image segmentation GrabCut SLICO CIELab background-optimal
  • 相关文献

参考文献17

二级参考文献71

  • 1王忠谦,朱宁.基于三次样条插值的图像放大的离散算法[J].苏州大学学报(自然科学版),2005,21(2):7-11. 被引量:12
  • 2BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009. 被引量:31
  • 3ROTHER C, KOLMOGOROV V, BLAKE A. GrabCut: interactive foreground extraction using iterated graph cuts [ J]. ACM Transac- tions on Graphics, 2004, 23(3): 309-314. 被引量:1
  • 4CHEN D, CHEN B, MAMIC G, et al. Improved GrabCut segmentation via GMM optimization [ C] // Proceedings of the 2008 International Con- ference on Digital Image Computing: Techniques and Applications. Washington, DC: IEEE Computer Society, 2008:39-45. 被引量:1
  • 5HANS D, TAO W B, WANG D S, et al. Image segmentation based on GrabCut framework integrating multiscale nonlinear struc- ture tensor [ J]. IEEE Transactions on Image Processing, 2009, 18 (10) : 2289 -2302. 被引量:1
  • 6王钧铭,高立鑫,赵力.基于分水岭预分割的Grabcut算法[J].声学技术,2008,27(4):179-182. 被引量:1
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6) : 583 - 598. 被引量:1
  • 8Boykov Y,Jolly M P. Interactive graph cuts for optimal bound ary and region segmentation of objects in n-d images[ C ]//Proc. of ICCV. [s.l. 3:[s. n.],2001: 105-112. 被引量:1
  • 9Rother C, Kolmogorov V,Blake A. Grab cut-interactive foreground extraction u- sing iterated graph cuts [ J ]. ACM Trans- aetions on Graphics, 2004,23 ( 3 ) : 309 - 314. 被引量:1
  • 10Nhat V, Manjunath B. Shap prior segmen- tation of multiple objects with graph cuts [ C ]//Proc. of IEEE Conference on Computer Vision and Pattern Recogni- tion. Anchorage, AK:[ s. n. ] ,2008. 被引量:1

共引文献169

同被引文献84

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部