期刊文献+

面向多样应用和异构集群的约束调度机制 被引量:2

Constraint scheduling mechanism for diverse applications and heterogeneous clusters
下载PDF
导出
摘要 针对传统集群调度器在异构环境中无法处理约束的问题,提出了一种约束调度机制,包括约束描述方法和约束调度算法。该描述方法通过易拓展的属性集合方式,描述异构化的任务需求和机器属性,进而描述各种约束;该调度算法将硬约束作为过滤标准,软约束作为选择标准,综合考虑软硬约束,为任务分配最优机器。实验表明,提出的约束调度机制不仅具有良好的易用性、较短的调度响应延迟,而且可以显著提高任务执行效率。因此,该调度机制可以较好地用于异构环境的集群调度中。 This paper proposed a constraint-based scheduling mechanism consisting of a constraint-description method and constraint scheduling algorithm to solve the problem of traditional cluster schedulers' inability to process constraint based issues in heterogeneous clusters. This constraint-description method could use extensible attribute sets to described heterogeneous task requirements and machine attributes, and then described all sorts of constraints. This algorithm used the hard constraints as filter criteria, the soft constraints as selection criteria, and then selected the best machine for task placement. Experiments show that the proposed constraint scheduling mechanism has better usability, lower scheduling response latency and significantly improved task execution efficiency. Thus, the scheduling mechanism can be better used for cluster scheduling in heterogeneous environments.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期3070-3074,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60903047) 国家"863"计划资助项目(2012AA01A401) 中国科学院先导专项项目(XDA06030200)
关键词 集群调度 约束 云计算 异构性 cluster scheduling constraint cloud computing heterogeneity
  • 相关文献

参考文献17

  • 1李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15. 被引量:122
  • 2Dean J, Sanjay G. MapReduce: simplified data processing on largeclusters [J]. Communications of the ACM, 2008,51 (1) :107-113. 被引量:1
  • 3Zaharia M, Chowdhury M,Das T, et al. Resilient distributed data-sets: a fault-tolerant abstraction for in-memory cluster computing[C ] //Proc of the 9th USENIX Conference on Networked Systems De-sign and Implementation. [S. 1. ] :USENIX Association, 2012. 被引量:1
  • 4Toshniwal A, TanejaS,ShuklaA,et al. Storm@ Twitter[ C]//Procof ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2014: 147-156. 被引量:1
  • 5Malewicz G,Austem M H,Bik A J C, et al. Pregel: a system forlarge-scale graph processing [ C ] //Proc of ACM SIGMOD Internation-al Conference on Management of Data. New York: ACM Press,2010:135-146. 被引量:1
  • 6王鹏,孟丹,詹剑锋,涂碧波.数据密集型计算编程模型研究进展[J].计算机研究与发展,2010,47(11):1993-2002. 被引量:39
  • 7朱晓敏,祝江汉,马满好.异构集群系统中具有QoS需求的实时任务容错调度[J].软件学报,2011,22(7):1440-1456. 被引量:11
  • 8Reiss C, Tumanov A, Ganger G R, ei al. Heterogeneity and dyna-micity of clouds at scale: Google trace analysis[ C]//Proc of the 3rdACM Symposium on Cloud Computing. New York:ACM Press,2012. 被引量:1
  • 9钱琼芬,李春林,张小庆,李腊元.云数据中心虚拟资源管理研究综述[J].计算机应用研究,2012,29(7):2411-2415. 被引量:53
  • 10孙矣.面向云环境数据中心的高效资源调度机制研究[D].北京:北京邮电大学,2012. 被引量:1

二级参考文献68

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2周文煜,陈华平,杨寿保,方君.基于虚拟机迁移的虚拟机集群资源调度[J].华中科技大学学报(自然科学版),2011,39(S1):130-133. 被引量:37
  • 3Wikipedia. Cloud computing [EB/OL]. [ 2008-11 -16 ]. http ://en. wikipedia, org/wiki/Cloud computing. 被引量:1
  • 4Ghemawat S, Gobioff H, Leung S. The Google file system [C] //Proc of the 19th ACM Symp on Operating System Principles(SOSP). New York, ACM, 2003:29-43. 被引量:1
  • 5Dean J, Ghemawat S. MapReduee: Simplified data processing on large clusters [C] //Proc of the 6th USENIX Symp on Operating Systems Design and Implementation (OSDI). San Francisco: USENIX Association, 2004: 137- 150. 被引量:1
  • 6Chang F, Dean J, Ghemawat S. et al. Bigtable: A distributed storage system for structured data [C] //Proc of the 7th USENIX Syrup on Operating Systems Design and Implementation(OSDI). San Francisco: USENIX Association, 2006:205-218. 被引量:1
  • 7Amazon Web Services. Amazon Elastic Compute Cloud [EB/OL]. [2008-12-01]. http://aws, amazon, com/cc2/. 被引量:1
  • 8Amazon Web Services. Amazon Simple Storage Service [EB/OL]. [2008- 12-01]. http://aws, amazon, com/s3/. 被引量:1
  • 9Patterson D, Technical perspective: The data center is the computer[J]. Communications of the ACM, 2008, 51(1) 105-105. 被引量:1
  • 10Bryant R. Data intensive supercomputing: The case for DISC [R/OL]. [2008-12- 10]. http://www, cs. cmu. edu/-bryant/ pubdir/emu cs 07-128. pdf. 被引量:1

共引文献218

同被引文献19

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部