期刊文献+

中心Hlder条件下求解重根的Halley算法的收敛半径 被引量:1

Convergence Radius of Halley's Method for Multiple Roots under Center-Hlder Continuous Condition
下载PDF
导出
摘要 鉴于具有积分余项的Taylor展开式的处理方法的简单性和有效性,用该方法来讨论求解重根的Halley算法的收敛半径问题,给出在仅仅假设方程的m+1阶导数满足中心Hlder的条件下Halley算法的收敛半径表达式.文献[6]中已经估算出了Halley算法的收敛半径,但没有给出该方法的优缺点.从数值角度对此结论进行分析,说明两种处理方法的条件和结论的不同. In terms of the simplicity and effectiveness of the processing approach based on the Taylor expansion with integral remains, in this thesis, we will try to use it to give the estimate of the convergence radius of Halley's method for multiple roots. The convergence radius of Halley' s method will be given only under the condition that the (m+l)th derivative of function satisfies center-HtSlder continuous condition. The 6th reference literature has already estimated the con- vergence radius of Halley's method, but has not given the advantages and disadvantages of this method. Some numerical tests are also given to verify our theoretical analysis, and show the differences of conditions and conclusions between these two processing approaches.
作者 刘素珍
出处 《淮海工学院学报(自然科学版)》 CAS 2015年第3期7-10,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 非线性方程 重根 收敛半径 Halley方法 中心Holder条件 泰勒展开式 nonlinear equation multiple roots convergence radius Halley's method center- H61der condition Taylor's expansion
  • 相关文献

参考文献7

  • 1REN Hongmin, ARGYROS 1. Convergence radius of the modified Newton method for multiple zeros under H61der continuous derivative[J].Applied Mathematics and Computation, 2010, 217(2): 612-621. 被引量:1
  • 2BI Weihong, REN Hongmin, WU Qingbiao. Conver- gence of the modified Halley's method for multiple ze- ros under H61der continuous derivative[J]. Numerical Algorithms, 2011, 58(4): 497-512. 被引量:1
  • 3ZHOU Xiaojian, SONG Yongzhong. Convergence ra- dius of Osada' s method for multiple roots under HOlder and center-H61der continuous conditions[C]. ICNAAM, AIP Conference Proceedings, 2011, 1389: 1836-1839. 被引量:1
  • 4ZHOU Xiaojian, CHEN Xin, SONG Yongzhong. On the convergence radius of the modified Newton' s method for multiple roots under the eenter-H61der con- dition[J]. Numerical Algorithms, 2014, 65(2): 221- 232. 被引量:1
  • 5ZHOU Xiaoian, SONG Yongzhong. Convergence ra- dius of Osada's method under center-Helder continu- ous eondition[J]. Applied Mathematics and Computa- tion, 2014, 243(6): 809-816. 被引量:1
  • 6刘素珍,周小建.求解重根的Halley方法收敛半径的再估计[J].哈尔滨师范大学自然科学学报,2015,31(4):36-40. 被引量:2
  • 7REN Hongmin, ARGYROS I. On the semi local conver gence of Halley's method under a cente Lipschitz condi- tion on the second Frchet derivative[J]. Applied Mathe- matics and Computation, 2012, 218(23): 11488-11495. 被引量:1

二级参考文献12

  • 1Schrtider E. I)ber unendlich viele Algorithmen zur Auflfisungder Gleichungen[J]. Math Ann, 1870(2) :317 -365. 被引量:1
  • 2Traub J. Iterative methods for the solution of equations [ J ]. Chelsea Publishing Company. New York, 1977. 被引量:1
  • 3Osada N. An optimal multiple root -finding method of order three [ J ]. J Comput Appl Math, 1994 (51 ) : 131 - 133. 被引量:1
  • 4Hansen E, Patrick M. A family of root finding methods [ J ]. Namer Math, 1977,27:257 - 269. 被引量:1
  • 5Ren H, Argyros I. Convergence radius of the modified Newton method for multiple zeros under HOlder continuous derivative [J]. Appl Math Comput,2010, 217:612 -621. 被引量:1
  • 6Traub J, Wozniakowski H. Convergenee and complexity ofNewton iteration for operator equation[ J]. J ACM, 1979,26 : 250 - 258. 被引量:1
  • 7Argyros I. On the convergence and application of Newton's method under weak HSlder continuity assumptions [ J ]. Int J Comput Math, 2003,80:767 - 780. 被引量:1
  • 8Zhou X, Song Y. Convergence Radius of Osada's Method for Multiple Roots under Hlder and Center - Hlder Continuous Conditions [ J ]. AIP Conference Proceedings, 2011,1389 : 1836 - 1839. 被引量:1
  • 9Bi W , Ren H, Wu Q. Convergence of the modified Halley'smethod for multiple zeros under HOlder continuous derivative [J]. Numer. Algor, 2011,58:497 -512. 被引量:1
  • 10Zhou X, Chen X, Song Y. On the convergence radius of the modified Newton's method for multiple roots under the Center - HOlder condition[J]. Numer Algor,2014, 65:221 -232. 被引量:1

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部