期刊文献+

基于联合模板稀疏表示的目标跟踪方法 被引量:7

Object tracking method based on sparse representation of joint template
原文传递
导出
摘要 针对传统基于稀疏表示的目标跟踪方法中,当场景中含有与目标相似的背景时容易出现跟踪漂移的问题,提出一种新的目标跟踪方法.该方法基于目标的局部二元模式特征,将目标外观模型同时用原始目标模板与当前帧部分粒子构成的联合模板稀疏表示,构建一个联合目标函数,将跟踪问题通过迭代转化为求解最优化问题.实验结果表明,所提出跟踪方法在解决遮挡、光照等问题的同时,对场景中含有与目标相似背景的序列具有较好的跟踪效果. When a scene contains a similar background to the object,the traditional tracking method based on sparse representation may produce the drifting problems,a new object tracking method is proposed.Based on the local binary pattern features(LBP) of the object,the object appearance model can sparse representation simultaneously with the original object template and the template built by some particles in the current frame,and build a joint objective function which can solve the tracking issue through an iterative optimization problem.Experimental results show that the track method can well track with occlusion and illumination issues,as well as the scene sequence with a similar background to the object.
出处 《控制与决策》 EI CSCD 北大核心 2015年第9期1696-1700,共5页 Control and Decision
基金 国家自然科学基金项目(61273237 61271121 61403116) 中国博士后基金项目(2014M560507) 中央高校基本科研业务费专项资金项目(2013HGBH0045)
关键词 目标跟踪 联合模板 联合目标函数 稀疏表示 object tracking joint template joint object function sparse representation
  • 相关文献

参考文献19

  • 1Yilmaz A, Javad O, Shah M. Object tracking: A survey[J]. ACM Computer Survey, 2006, 38(4): 1-45. 被引量:1
  • 2Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. New York, 2006: 798-805. 被引量:1
  • 3杨欣,费树岷,李刚,周大可.基于复杂特征融合的改进mean shift目标跟踪[J].控制与决策,2014,29(7):1297-1300. 被引量:10
  • 4Ross D, Lira J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vis, 2008, 77(1/2/3): 125-141. 被引量:1
  • 5Wang D, Lu H C, Chen Y W. Incremental MPCA for color object tracking[C]. Int Conf on Pattern Recognition. Istanbul, 2010: 1751-1754. 被引量:1
  • 6Hu W M, Li X, Zhang X, et al. Incremental tensor subspace learning and its applications to foreground segmentation and tracking[J]. Int J of Computer Vision, 2011, 91(3): 303-327. 被引量:1
  • 7Kwon J, Lee K M. Visual tracking decomposition[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. San Francisco, 2010: 1269-1276. 被引量:1
  • 8Mei X, Ling H B. Robust visual tracking using 11 minimization[C]. Porc of IEEE Conf on Computer Vision. Kyoto, 2009: 1436-1443. 被引量:1
  • 9Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. Anchorage, 2009: 983-990. 被引量:1
  • 10徐建军,张蓉,毕笃彦,孙路.一种新的AdaBoost视频跟踪算法[J].控制与决策,2012,27(5):681-685. 被引量:6

二级参考文献42

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:23
  • 2Jepson A D, Fleet D J, EI-Maraghi T E Robust online appearance models for visual tracking[J]. IEEE Trans onPattern Analysis and Machine Intelligence, 2003, 25(10): 1296-1311. 被引量:1
  • 3Comaniciu D, Ramesh V, Meer E Kernel-Based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575. 被引量:1
  • 4Wang H, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661-1667. 被引量:1
  • 5Cornaniciu D, Meer P. A robust approach toward feature space analysis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. 被引量:1
  • 6Tao H, Sawhney H S, Kumar R. Object tracking with Bayesian estimation of dynamic layer representations[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 75-89. 被引量:1
  • 7Williams O, Blake A, Cipolla R. Sparse Bayesian Learning for efficient visual tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1292- 1304. 被引量:1
  • 8Grabner H, Bischof H. On-line boosting and vision [C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 260-267. 被引量:1
  • 96Grabner M, Grabner H, Bischof H. Learning features for tracking[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2007: 1-8. 被引量:1
  • 10Lin R S, Ross D, Lim J, et al. Adaptive discriminative generative model and its applications[M]. Boston: MIT Press, 2005: 801-808. 被引量:1

共引文献24

同被引文献42

  • 1Yilmaz A,Javed O,Shah M. Object Tracking:A Survey[J]. ACM Computer Surveys,2006,38(4):1-45. 被引量:1
  • 2Agarwal S, Roth D. Learning a Sparse Representation for Object Detection [ C ]//Proceedings of European Con- ference on Computer Vision. Washington D. C., USA: IEEE Press ,2006 .97-101. 被引量:1
  • 3Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J 1. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2008,31 (2) .210-227. 被引量:1
  • 4Mei Xue ,Ling Haibin. Robust Visual Tracking Using L1 Mini- mization[ C ~//Proceedings of the 12th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press ,2009 : 1436-1443. 被引量:1
  • 5Mei Xue ,Ling Haibin,Wu Yi ,et al. Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2011:1257-1264. 被引量:1
  • 6Bao Chenglong, Wu Yi, Ling Haibin, et al. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach [ C ]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Reconition. Washington D.C., USA :IEEE Press ,2012:1830-1837. 被引量:1
  • 7Lan X Y,Ma A J, Yuan P C. Multi-cue Visual Tracking Using Robust Feature-level Fusion Based on Joint Sparse Representation I C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2014 ~ 1194-1201. 被引量:1
  • 8Wang Dong, Lu Huchuan, Yang M H. Online Object Tracking with Sparse Prototypes I J ]. IEEE Transactions on Image Processing,2013,22( 1 ) :314-325. 被引量:1
  • 9Zhang Tianzhu, Ahuja N, Yang M H, et al. Robust Visual Tracking via Consistent Low-rank Sparse Learning[ J 1. International Journal of Computer Vision, 2014,111(2) .171-190. 被引量:1
  • 10Zhuang Bohan, Lu Huchuan, Xiao Ziyan, et al. Visual Tracking via Discriminative Sparse Similarity Map [ J 1.IEEE Transactions on Image Processing, 2014,23 ( 4 ) : 1872-1881. 被引量:1

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部