摘要
利用X射线衍射仪和扫描电镜,研究预退火对机械合金化制备的Al-10%Pb和Al-10%Pb-4.5%Cu(质量分数)纳米相复合结构合金中Pb相长大行为的影响,此机械合金化制备的Al-10%Pb和Al-10%Pb-4.5%Cu合金应在873 K保温10 min后进行预退火。结果表明,预退火后的Al-10%Pb合金在823K退火时,Pb相发生了异常长大,且预退火可促进Pb相的异常长大,这与预退火促进基体Al的异常长大有关。预退火后的Al-10%Pb-4.5%Cu合金中Pb相的长大行为仍可用LSW理论描述,但其长大速率明显大于未预退火的Al-10%Pb-4.5%Cu合金中Pb相的长大速率。这是由预退火使Pb相的长大驱动力增加所引起的。
The effect of pre-annealing on the growth behavior of Pb phase in Al-10%Pb and Al-10%Pb-4.5%Cu nanocomposite alloys prepared by mechanical alloying was investigated by X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM). The as-milled Al-10%Pb and Al-10%Pb-4.5%Cu alloys were heated at 873 K for 10 minutes by pre-annealing. The results show that the abnormal growth of Pb phase in pre-annealed Al-10%Pb alloy is more obvious than that in un-annealed alloy when heated at 823 K. The pre-annealing makes the size difference of Al grains more obvious, which can promote the abnormal growth of Pb phase in pre-annealed Al-10%Pb alloy. The growth of Pb phase in pre-annealed Al-10%Pb-4.5%Cu alloys still follows the LSW theory. It has also been found that the growth rate of Pb phase for the pre-annealed Al-10%Pb-4.5%Cu alloy is greater than that for un-annealed alloy. This is mainly due to the change of driving force of the growth, which has shown an increase after the pre-annealing.
出处
《粉末冶金材料科学与工程》
EI
北大核心
2015年第4期636-640,共5页
Materials Science and Engineering of Powder Metallurgy
基金
国家自然科学基金资助项目(51201118)
清洁能源材料广东省普通高校重点实验室资助项目(KLB11003)