期刊文献+

基于Hadamard纠错码核匹配追踪的多类分类方法

Multi-class classification of kernel matching pursuit based on Hadamard error-correcting output codes
下载PDF
导出
摘要 针对传统核匹配追踪(kernel matching pursuit,KMP)学习机只能解决二类分类问题的不足,结合纠错输出编码(error-correcting output codes,ECOC)的思想,提出了一种基于Hadamard纠错码的核匹配追踪多类分类方法。该算法通过Hadmard纠错码将核匹配追踪算法推广到多类分类领域,并利用纠错码本身具备的纠错能力提高了分类器的泛化性能。实验中分别对UCI数据集和3种典型空天目标的高分辨一维距离像(high resolution range profile,HRRP)数据集进行测试,通过与2种经典的编码方法进行比较,结果表明该编码方法可以显著提高分类器的性能和鲁棒性。 Since the classical kernel matching pursuit (KMP)learner can only address the binary classification problems,a KMP based on Hadamard correct codes is proposed,borowing the idea of error-correcting output codes (ECOC).This algorithm can be extended to multi-class classification through Hadamard correct codes.Moreover,the correcting ability of the correct codes can enhance the generation capability of the classifier.The illustrative experiments implemented on UCI datasets and three kinds of aero target high resolution range profile (HRRP)data set demonstrate that the proposed algorithm outperforms two other coding methods in both classification performance and robust ness.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第10期2228-2233,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61272011 61309022) 陕西省自然科学青年基金项目(2013JQ8031)资助课题
关键词 模式识别 核匹配追踪 纠错输出编码 多类分类 error-correcting output codes (ECOC) pattern recognition kernel matching pursuit multi-class classification
  • 相关文献

参考文献14

  • 1Pascal V, Bengio Y. Kernel matching pursuit[J]. Machine Learning, 2002, 48(1/3): 165-187. 被引量:1
  • 2CevherV, Krause A. Greedy dictionary selection for sparse rep- resentation[J]. IEEE Journal of Selected Topics Signal Pro- cessing, 2011, 5(5): 979-988. 被引量:1
  • 3Sun P, Yao X. Sparse approximation through boosting for learn- ing large scale kernel machines[J]. IEEE Trans. on Neural Net- works, 2010, 21(6): 883-894. 被引量:1
  • 4付丽华,李宏伟,张猛.基于更贪心策略的快速正交核匹配追踪算法[J].电子学报,2013,41(8):1580-1585. 被引量:8
  • 5雷阳,孔韦韦,雷英杰.基于直觉模糊c均值聚类核匹配追踪的弹道中段目标识别方法[J].通信学报,2012,33(11):136-143. 被引量:11
  • 6Vapnik V N. Statistical learning theory[M]. New York: Wi- ley,1998. 被引量:1
  • 7KreBel U. Pairwise classification and support vector machines in advances in kernel methods-support vector learning[C]//Proc. of the Cambridge, 1999 : 255 - 268. 被引量:1
  • 8Dietterich T G, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial In- telligence Research, 1995, 34(2) : 263 -286. 被引量:1
  • 9Zhang J Y, Zhao X X, Du L. Solving multi-class problems by data-driven topology-preserving output codes[J]. Neurocomput- ing, 2013, 121(Complete): 556-568. 被引量:1
  • 10Francesco C, Oriol P, Petia R. ECOC-DRF: Discriminative random fields based on error correcting output codes[J]. Pat- tern Recognition, 2014, 47(6) : 2193 - 2204. 被引量:1

二级参考文献35

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部