期刊文献+

改进分解进化算法求解动态火力分配多目标优化模型 被引量:14

Improved Decomposition-Based Evolutionary Algorithm for Multi-objective Optimization Model of Dynamic Weapon-target Assignment
下载PDF
导出
摘要 战前制定合理的火力分配(WTA)方案,可以优化资源配置,用最小的代价获取最大的战场收益。其一,建立了面向多型武器协同进攻作战的动态火力分配(DWTA)多目标优化模型,由多个阶段静态模型构成,各阶段静态模型参数需根据战场态势实时获取;其二,重点研究阶段静态模型求解算法。针对模型特点,设计了一种满足资源约束的编码方式,融合禁忌搜索和拥挤距离策略,提出了一种改进分解进化算法。对比实验验证了算法的可行性、快速性和有效性。 A reasonable weapon-target assignment(WTA) scheme is developed to optimize the allocation of limited resources, which brings the maximum awards with minimum costs. A dynamic weapon-target assignment(DWTA) multi-objective optimization model is established, especially for the offensive opera- tion with muhi-weapon. The proposed model is composed of several stage static models. The parameters of each stage model are obtained from the battlefield in real time. An algorithm is elaborately studied to solve the stage model based on the hypothesis to deal with the dynamic model. According to the charac- teristic of the proposed model, an encoding mode is constructed to satisfy the resource constraints. An im- proved decomposition-based evolutionary algorithm is proposed by mixing of tabu search and crowding distance strategies. Comparative experiments prove that the proposed algorithm is feasible, fast and efficient.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第8期1533-1540,共8页 Acta Armamentarii
关键词 兵器科学与技术 多目标优化 动态火力分配 分解进化算法 禁忌搜索 ordnance science and technology multi-objective optimization dynamic weapon-target as- signment decomposition-based evolutionary algorithm tabu search
  • 相关文献

参考文献23

  • 1Hosein P A, Athans M. Preferential defense strategies, part II: the dynamic case, LIPS-P-2003[R]. Cambridge, UK: MIT, 1990. 被引量:1
  • 2Tokgz A, Bulkan S. Weapon target assignment with combinatorial optimization techniques[J]. International Journal of Advanced Research in Artificial Intelligence, 2013, 2(7): 39-50. 被引量:1
  • 3Xin B, Chen J, Zhang J, et al. Efficient decision makings for dynamic weapon-target assignment by virtual permutation and tabu search heuristics[J]. IEEE Transactions on Evolutionary Computation, 2010, 40(6): 649-662. 被引量:1
  • 4Xin B, Chen J, Peng Z H, et al. An efficient rule-base constructive heuristic to solve dynamic weapon-target assignment problem[J]. IEEE Transactions on Evolutionary Computation, 2011, 41(3): 598-606. 被引量:1
  • 5Hosein P A, Athans M. Some analytical results for the dynamic weapon-target allocation problem,LIPS-P-1944[R]. Cambridge, UK: MIT,1990. 被引量:1
  • 6Leboucher C, Shin Hyo-Sang, Siarry P, et al. A two-step optimisation method for dynamic weapon target assignment problem[EB/OL]. US: INTECH, 2013[2015-03-09]. http:∥dx.doi.org/10.5772/53606. 被引量:1
  • 7Havens M E. Dynamic allocation of fire and sensors[D]. Monterey, CA, US: Naval Postgraduate School, 2002. 被引量:1
  • 8Cai Huaiping Liu Jingxu Chen Yingwu Wang Hao.Survey of the research on dynamic weapon-target assignment problem[J].Journal of Systems Engineering and Electronics,2006,17(3):559-565. 被引量:48
  • 9Lloyd S P, Witsenhausen H S. Weapon allocation is NP-complete[C]∥Proceedings of IEEE Summer Simulation Conference. Reno, NV, US: IEEE,1986: 1054-1058. 被引量:1
  • 10Ravindra K A, Arvind K, Krishna C J, et al. Exact and heuristic algorithms for the weapon-target assignment problem[J]. Operations Research, 2007, 55(6): 1136-1146. 被引量:1

二级参考文献43

共引文献522

同被引文献158

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部