期刊文献+

极坐标系下非分裂PML及时域有限元实现 被引量:1

A Non-Splitting PML for Elastic Waves in Polar Coordinates and Its Finite Element Implementation
下载PDF
导出
摘要 在弹性波传播的数值模拟中,吸收边界被广泛应用于截取有限空间进行无限空间问题的分析.完全匹配层(perfect matched layer,PML)吸收边界较其它吸收边界条件具有更优越的吸收性能,已被成功应用于直角坐标系下的弹性波方程正演模拟.考虑极坐标系下二阶弹性波动方程,通过采用辅助函数的方法,提出了一种非分裂格式的完全匹配层吸收边界条件.并且基于Galerkin近似技术,给出了非对称以及轴对称条件下的时域有限元计算格式.通过数值算例分析了该极坐标系下分裂格式的完全匹配层吸收边界的有效性. In the solving of the elastic wave equations with the numerical approximation tech- niques, the absorbing boundary conditions had been widely used to truncate the infinite-space simulation to a finite-space one. The perfect matched layer (PML) technique as an absorbing boundary condition had exhibited excellent absorbing efficiency in the forward simulation of the elastic wave equation formulated in rectangular coordinates. Based on the stretched coordinate concept, an advanced non-splitting-field perfect matched layer ( non-splitting PML) equation for elastic waves was formulated in the polar coordinate system. Through the introduction of inte- grated complex variables in the radial direction into the auxiliary functions, the PML formula- tion was extended in polar coordinates in view of the 2nd-order elastic wave equation with dis- placements as basic unknowns. In addition, aimed at the time-domain cases and with the finite- element method for space discretization, the finite-element time-domain (FETD) scheme in standard displacement-based formulation was presented. The scheme for the special cases in axisymmetric polar coordinates was also given. The effectiveness and validity of the present non-splitting PML formulation are demonstrated with several numerical examples.
出处 《应用数学和力学》 CSCD 北大核心 2015年第9期956-969,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11162008 51368038) 甘肃省环境保护厅科研基金(GSEP-2014-23) 甘肃省教育厅研究生导师基金(1103-07)~~
关键词 完全匹配层 极坐标系 吸收边界条件 时域有限元 perfect matched layer polar coordinate system absorbing boundary condition time-domain finite element
  • 相关文献

参考文献23

  • 1Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division,1969,95(4): 869-878. 被引量:1
  • 2White W, Valliappan S, Lee I K. Unified boundary for finite dynamic model[J]. Journal of the Engineering Mechanics Division,1977,103(5): 949-964. 被引量:1
  • 3Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,1984,49(5): 533-549. 被引量:1
  • 4Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67(6): 1529-1540. 被引量:1
  • 5Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves[J]. Proceedings of the National Academy of Sciences,1977,74(5): 1765-1766. 被引量:1
  • 6LIAO Zhen-feng, HUANG Kong-liang, YANG Bai-po, YUAN Yi-fan. A transmitting boundary for transient wave analyses[J]. Science China: Mathematics,1984,27(10): 1063-1076. 被引量:1
  • 7Higdon R L. Numerical absorbing boundary conditions for the wave equation[J]. Mathematics of computation,1987,49(179): 65-90. 被引量:1
  • 8熊章强,唐圣松,张大洲.瑞利面波数值模拟中的PML吸收边界条件[J].物探与化探,2009,33(4):453-457. 被引量:7
  • 9Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics,1996,127(2): 363-379. 被引量:1
  • 10Udagedara I, Premaratne M, Rukhlenko I D, Hattori H T, Agrawal G P. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials[J]. Optics Express,2009,17(23): 21179-21190. 被引量:1

二级参考文献20

  • 1葛德彪,石守元,朱之伟.一种新的FDTD入射场设置方法[J].微波学报,1995,11(3):187-190. 被引量:12
  • 2王永刚,邢文军,谢万学,朱兆林.完全匹配层吸收边界条件的研究[J].中国石油大学学报(自然科学版),2007,31(1):19-24. 被引量:52
  • 3周竹生,刘喜亮,熊孝雨.弹性介质中瑞雷面波有限差分法正演模拟[J].地球物理学报,2007,50(2):567-573. 被引量:71
  • 4YEE K S. Numerical solution of initial bounary value problem involving Maxwell's equations in isotropic media[J].IEEE Trans. Antennas and Propagation,1966,14 (5) : 302- 307. 被引量:1
  • 5BERENGER J P.A perfectly matched layer for the absorption of electro-magnetic waves[J]. Computational Physics, 1994,114(2):185-200. 被引量:1
  • 6GEDNEY S D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. IEEE trans. Antennas and Propagation, 1996,44(12)1630-1639. 被引量:1
  • 7TAFLOVE A. Advances in computational electrodynamics [M ]. Norwood, MA:Artech House, Oct. 1998. 被引量:1
  • 8ZHAO L, CANGELLARIS A C. GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids[J]. IEEE Trans. Microwave Theory and Techniques, 1996, 44 (12):2555-2563. 被引量:1
  • 9DIB N, WELLER T, IMPARATO M. Width equals analysis of cylindrical transmission lines with the finite-difference time-domainmethodD]. IEEE trans. Microwave Theory and Techniques, 47(4): 509-512. 被引量:1
  • 10LIU Q H,HE J Q. An efficient PSTD algorithm for cylindrical coordinates [J]. IEEE trans. Antennas and Propagation, 2001,49(9):1349-1351. 被引量:1

共引文献8

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部