期刊文献+

基于掩膜预处理的稀疏表示和压缩感知图像重建 被引量:9

The reconstruction of compressive sensing and sparse representation based mask pretreatment
下载PDF
导出
摘要 近年来兴起的压缩感知(compressive sensing,or compressed sampling,CS)理论对信号稀疏性的要求,使信号的稀疏表示得到了前所未有的关注。考虑到现实信号往往是非稀疏性的,而压缩感知理论要求被测信号必须满足稀疏性或在某个规范正交基下满足稀疏性,因此信号的稀疏性表示变得十分重要。主要研究探索了二值掩膜预处理的稀疏表示方法。结合二值掩膜的算法去除人眼不敏感的DCT系数,在不影响图像主观质量的前提下提高测量系数的稀疏度。实验表明提出的预处理方法减少了CS的重建时间,并且提高了图像的重建质量。 In recent years,the rise of the theory of compressed sensing signal sparsity requirements,so sparse representation of the signal received unprecedented attention.Taking into account the real signal is often non-sparsity, and compressive sensing theory must meet the requirements of the measured signal sparsity or meet at a certain sparseness orthonormal base,so sparse representation of the signal becomes very important.This paper studies explored the sparse representation of the binary mask pretreatment.The algorithm combines the binary mask the human eye is not sensitive to the removal of the DCT coefficients to improve the measurement sparsity factor in subj ective image without compromising quality. Experimental results show that our proposed method reduces pretreatment CS reconstruction time and improve the quality of the reconstructed image.
出处 《电子测量技术》 2015年第8期79-81,共3页 Electronic Measurement Technology
关键词 压缩感知 二值掩膜 DCT 稀疏表示 compressive sensing(CS) binary mask DCT sparse representation
  • 相关文献

参考文献7

  • 1李攀,刘书朋,李联鑫,李亭.基于ARM的新型凝胶成像系统[J].电子测量技术,2013,36(5):78-82. 被引量:3
  • 2陆永刚,黄建元,丁海龙,赵新荣.智能型手指静脉图像采集与控制系统的研究[J].电子测量与仪器学报,2010,24(2):184-189. 被引量:10
  • 3AHUMADA JR A J, PETERSON H A. Luminane~ model-based DCT quantization for color image compression[C]//SPIE/IS~T 1992 Symposium on Electronic Imaging : Science and Technology. International Society for Optics and Photonies, 1992: 365-374. 被引量:1
  • 4CANDIES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592. 被引量:1
  • 5BARANIUK R G. Compressive sensing[J]. IEEE signal processing magazine, 2007, 24 (4) : 118-121. 被引量:1
  • 6CANDES E J, TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies [ J ]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 7Donoho D L. Compressed sensingD]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1

二级参考文献7

共引文献10

同被引文献75

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部