期刊文献+

基于精英反向学习的混沌布谷鸟搜索算法 被引量:3

A Cuckoo Searching Algorithm Using Elite Opposition-Based Learning and Chaotic Disturbance
原文传递
导出
摘要 布谷鸟搜索(Cuckoo Search,CS)算法高效简单,但在求解复杂问题时收敛效率较低.为提高CS算法的寻优精度和收敛速度,提出了一种基于精英反向学习的混沌扰动布谷鸟搜索算法(CH-EOBCCS).该算法引入精英个体,通过精英个体反向学习生成精英反向解,从当前解和精英反向解中挑选优异个体作为下一代种群,同时,在迭代中对鸟巢位置采用混沌扰动策略,扩大种群多样性,有效的提高了算法全局搜索能力和搜索精度.通过8个标准测试函数对比实验,结果表明加入混沌扰动的精英反向学习布谷鸟搜索算法具有较强的搜索能力和较高的寻优精度. CS(Cuckoo Search)algorithm is efficient and simple,but also exists the problem of low efficiency of convergence for complex problems.In order to improve the convergence precision and global exploration ability,a Cuckoo search algorithm using elite opposition-based learning and chaotic disturbance is proposed.The elite individual is introduced to generate their opposite solutions by Elite opposition-based Learning.This mechanism is helpful to enhance the global explorative ability of CS.At the same time,chaotic perturbation operator is added in the parasitic nest position in the iteration,thereby the population diversity is expanded and the algorithm accuracy is improved.The experiments are conducted on 8classic Benchmark functions,and the results show that the new algorithm has much better search performance than CS,which remarkably improves the ability of CS to jump out of the local optima.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2015年第4期356-362,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金项目(61070009 61373038)资助项目
关键词 布谷鸟搜索算法 精英反向学习 混沌扰动 Cuckoo algorithm elite opposition-based learning chaotic disturbance
  • 相关文献

参考文献14

  • 1Yang X S,Deb S.Cuckoo search via Levy flights[C]//Proceedings of World Congress on Nature&Biologically In-spired Computing.Piscataway:IEEE Publications,2009:210-214. 被引量:1
  • 2Yang X S,Deb S.Engineering optimization by cuckoo search[J].Int J Math Modeling&Num Optimization,2010,1(4):330-343. 被引量:1
  • 3Gandomi A,Yang X,Alavi A.Cuckoo search algorithm:A metaheuristic approach to solve structural optimization problems[J].Engineering with Computers,2013,29(29):17-35. 被引量:1
  • 4Valian E,Mohanna S,Tavakoli S.Improved cuckoo search algorithm for feed forward neural network training[J].Int J of Artificial Intelligence&Applications,2011,2(3):36-43. 被引量:1
  • 5郑洪清,周永权.一种自适应步长布谷鸟搜索算法[J].计算机工程与应用,2013,49(10):68-71. 被引量:71
  • 6Walton S,Hassan O,Morgan K,et al.Modified cuckoo search:A new gradient free optimization algorithm[J].Chaos,Solitons&Fractals,2011,44(9):710-718. 被引量:1
  • 7Ghodrati A,Lotfi S.A hybrid CS/PSO algorithm for global optimization[C]//Intelligent Information and Database System.Berlin,Heidelberg:Springer-Verlag,2012:89-98. 被引量:1
  • 8Marichelvam M K.An improved hybrid cuckoo search(IHCS)metaheuristics algorithm for permutation flow shop scheduling problems[J].Int J of BioInspired Computation,2012,4(4):200-205. 被引量:1
  • 9Wang F,He X S,Luo L G,Wang Y.Hybrid optimization algorithm of PSO and cuckoo search[C].Proc of the 2nd Int’l Conf on Artificial Intelligence,Management Science and Electronic Commerce(AIMSEC).Piscataway:IEEE Inc.,2011.1172-1175. 被引量:1
  • 10王凡,贺兴时,王燕.基于高斯扰动的布谷鸟搜索算法[J].西安工程大学学报,2011,25(4):566-569. 被引量:68

二级参考文献21

  • 1付国江,王少梅,刘舒燕,李宁.含维变异算子的粒子群算法[J].武汉大学学报(工学版),2005,38(4):79-83. 被引量:20
  • 2GOLDBERG D E. Genetic algorithm in search, optimization and machine learning [ M ]. Boston: Addison-Wesley Longman Publishing Co. Inc, 1989. 被引量:1
  • 3DORIGO M, BONABEAU E,THERAULAZ G. Ant algorithms and stigraergy [ J ]. Future Generation Computer Systems,2000, 16(8) :851-871. 被引量:1
  • 4KENNEDY J, EBERHART R. Particle swarm optimization [ C ]//Proc IEEE Int Conf. on Neural Networks, Australia: Perth, 1995 : 1 942-1 948. 被引量:1
  • 5YANG X S,DEB S. Cuckoo search via Levy flights [ C]//Proceedings of World Congress on Nature & Biologically Inspired Computing, India: IEEE Publications,2009:210-214. 被引量:1
  • 6YANG X S,DEB S. Engineering optimization by cuckoo search [J]. Int J Math Modeling & Num Optimization,2010(4) :330- 343. 被引量:1
  • 7Goldberg D E.Genetic algorithm in search,optimization and machine learning[M].Boston: Addison-Wesley Longrnan Pub- lishing Co. Inc, 1989. 被引量:1
  • 8Dorigo M, Bonabeau E, Theraulaz G.Ant algorithms and stig- mergy[J].Future Generation Computer System, 2000, 16(8) : 851-871. 被引量:1
  • 9Kennedy J, Eberhart R.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks.Perth, Australia: [s.n.], 1995: 1942-1948. 被引量:1
  • 10Yang X S, Deb S.Cuckoo search via Levy flights[C]//Pro- ceedings of World Congress on Nature & Biologically In- spired Computing.India:IEEE Publications,2009:210-214. 被引量:1

共引文献213

同被引文献20

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部