期刊文献+

2条有理三次Bézier曲线的部分重合条件

The Study of Coincidence or Partial Coincidence Condition for Two Rational Cubic Bézier Curves
下载PDF
导出
摘要 当2条曲线重合或几乎重合时,基于曲线分裂的求交算法或因为过多次数的分裂而导致内存不足而系统奔溃,或最后的计算结果因分裂次数的不足而未能满足精度要求.2条曲线重合检测技术可以帮助求交算法来避开上述问题.本文以2条有理三次Bézier曲线为例,提出并证明了重合检测基于曲线控制多边形的如下判定方法,即2条有理三次Bézier曲线重合的条件为或者两条曲线退化为同一条一或二次的曲线,或者在首末权因子为1的限制下,2条曲线的控制多边形重合且对应的权因子相等.当2条曲线部分重合时,本文给出了简便的方法来确定相应的重合位置,从而将部分重合的判定问题转化为完全重合的判定问题.实例表明了本文方法的正确性及简单有效性. When two curves are coincident or almost coincident, the corresponding intersection algorithm based on curve splitting will either run out of memory and lead to system crash because of too many times of divi-sion, or the final results can not meet the accuracy requirement due to insufficient divisions. Taking two ra-tional cubic Bézier curves for instance, this paper proposes and proves the coincidence condition based on the two control polygons. Firstly, it judges whether or not the two Bézier curves can be degenerated into ra-tional Bézier curves of degree 1 or 2. If both of the two curves are not degenerated, they are represented in the form that their first and last weights are equal to 1; and then deciding whether their control polygons are coincident and their corresponding weights are the same. Finally, it discusses the coincidence condition that two rational cubic Bézier curves are partially coincident, and gives a simple method to determine the corre-sponding coincidence position, which converts the partially coincidence detection problem into the complete coincidence detection. Numerical examples demonstrate the effectiveness and validity of the proposed algo-rithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第9期1648-1652,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61003194 61370218)
关键词 有理三次Bézier曲线 完全重合条件 控制多边形 部分重合条件 rational cubic Bézier curves complete coincidence condition control polygon partial coincidence condition
  • 相关文献

参考文献9

  • 1曹锋.基于Bezier曲线求交的曲线裁剪算法[J].计算机应用,1998,18(8):20-22. 被引量:2
  • 2Mortenson M E. Geometric modeling[M]. New York: WileyComputer Publishing, 1985. 被引量:1
  • 3陈小雕,徐岗,王毅刚,雍俊海.直线/NURBS曲线等基于曲线束的求交方法[J].计算机辅助设计与图形学学报,2009,21(7):918-923. 被引量:5
  • 4Hu C Y, Maekawa T, Patrikalakis N M, et al. Robust intervalalgorithm for surface intersections[J]. Computer-Aided Design,1997, 29(9): 617-627. 被引量:1
  • 5Morken K, Reimers M, Schulz C. Computing intersections ofplanar spline curves using knot insertion[J]. Computer AidedGeometric Design, 2009, 26(3): 351-366. 被引量:1
  • 6Schulz C. Bézier clipping is quadratically convergent[J].Computer Aided Geometric Design, 2009, 26(1): 61-74. 被引量:1
  • 7Wang W K, Zhang H, Liu X M, et al. Conditions for coincidenceof two cubic Bézier Curves[J]. Journal of Computationaland Applied Mathematics, 2011, 235(17): 5198-5202. 被引量:1
  • 8Chen X D, Ma W Y, Deng C Y. Conditions for the coincidenceof two quartic Bézier curves[J]. Applied Mathematics andComputation, 2013, 225(12): 731-736. 被引量:1
  • 9Monagan M, Pearce R. Polynomial division using dynamic arrays,heaps, and packed exponent vectors[M] //Lecture Notes inComputer Science. Heidelberg: Springer, 2007, 4770: 295-315. 被引量:1

二级参考文献6

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部