期刊文献+

基于高光谱信息融合和相关向量机的种蛋无损检测 被引量:19

Hatching eggs nondestructive detection based on hyperspectral-imaging information and RVM
下载PDF
导出
摘要 为了尽可能早的检测出无精蛋和受精蛋,该文提出采用透射高光谱成像技术,融合图像和光谱信息,对其受精信息进行检测。利用高光谱图像系统采集孵化前种蛋在400∽1 000 nm的高光谱图像,提取图像特征(长短轴之比、伸长度、圆度、蛋黄面积与整蛋面积之比);筛选出400∽760 nm的波段,通过Normalize预处理结合相关系数法提取155个光谱特征变量;运用主成分分析法对图像和光谱的融合信息进行降维,采用相关向量机(relevance vector machine,RVM)分别建立基于图像、光谱和图像-光谱融合信息的受精蛋和无精蛋分类判别模型,并与支持向量机(support vector machine,SVM)模型进行比较,RVM模型检测正确率分别为90%,91%,96%;测试集检测时间分别为0.6619,1.0821,0.5016 s。SVM模型检测正确率分别为84%,90%,93%;测试集检测时间分别为5.9386,5.9886,5.6672 s。结果表明,基于图像-光谱融合所建立的模型优于单一信息的模型,在分类精度上,采用RVM分类精度高于SVM的分类精度;在分类时间上,RVM的分类时间比SVM短,因此,利用高光谱融合信息和相关向量机可以提高种蛋检测精度,研究结果为孵前无精蛋和受精蛋的在线实时检测提供参考。 It is one of difficult problems to be resolved in egg hatching industry to identify the fertile information of hatching eggs and eliminate infertile eggs prior to the incubation. Many infertile eggs have been wasted in the process of incubation every year, which has caused considerable economic loss. The existing domestic infertile egg detection mainly depends on traditional manual candle method. However, this detection method requires high intensity of labor and is time-consuming. In addition, the result of detection is subjective and its accuracy can not be guaranteed. The detection of infertile eggs prior to incubation can improve the economic efficiency of incubation and the quality of egg processing in late period, and it can bring considerable economic benefits. This paper proposed that the hyperspectral imaging technology consisting of image and spectral information and the relevance vector machine(RVM) were used for detecting the fertile information of eggs before incubation. To build a hyperspectral transmission image acquisition system, the light source, the light intensity, the resolution, the exposure time, the platform moving speed and other parameters were adjusted when the images of hyperspectral instrument were captured. Ultimately, the exposure time of the camera was determined as 0.1 s, the resolution of image as 400×400 pixels, and the platform moving speed as 1.7 mm/s. Before hatching eggs incubation, hyperspectral images system was used to acquire the images of hatching eggs between 400 and 1000 nm. The characteristic information of the ratios of length to short axis, the elongation, the roundness and the ratios of the yolk area to the whole area was extracted based on the images. Based on the comparison of the calibration results among 3 waveband regions(400-760, 760-1000, and 400-1000 nm), the visible light in band range of 400-760 nm was chosen to classify actual type of hatching eggs. Different spectra pretreatment methods were used to analyze the spectra, e.g. multiplicative sca
出处 《农业工程学报》 EI CAS CSCD 北大核心 2015年第15期285-292,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 公益性行业(农业)科研专项(201303084)
关键词 图像处理 模型 无损检测 高光谱 种蛋 相关向量机 支持向量机 imaging processing models nondestructive examination hyperspectral image hatching eggs RVM SVM
  • 相关文献

参考文献29

  • 1USDA. Poultry: Chickens and eggs[Z]. USDA National Agricultural Statistics Service, 2006. 被引量:1
  • 2Das K, Evans M D. Detecting fertility of hatching eggs using machine vision I: Histogram characterization method[J]. Transactions of the ASAE, 1992, 35(4): 1335-1341. 被引量:1
  • 3张伟,屠康,刘鹏,潘磊庆,詹歌.基于机器视觉与敲击振动融合的鸭蛋孵化特性检测[J].农业机械学报,2012,43(2):140-145. 被引量:16
  • 4Bamelis F R, Tona K, De Baerdemaeker J G, et al. Detection of early embryonic development in chicken eggs using visible light transmission[J]. Br. Poult. Science, 2002, 43(2): 204-212. 被引量:1
  • 5Kemps B J, De Ketelaere B, Bamelis F R, et al. Vibration analysis on incubating eggs and its relation to embryonic development[J]. Biotechnology Progress, 2003, 19(3): 1022-1025. 被引量:1
  • 6Coucke P M, Room G M, Decuypere E M, et al. Monitoring embryo development in chicken eggs using acoustic resonance analysis[J]. Biotechnology Progress, 1997, 13(4): 474-478. 被引量:1
  • 7Jones S T, Shattuck R E. Detection of Early Embryonic Development in hatching eggs: A hyperspectral imaging systems and neural network approach[J]. Johns Hopkins APL Technical Digest, 2005(1): 67-73. 被引量:1
  • 8Lawrence K C, Smith D P, Windham W R, et al. Egg embryo development detection with hyperspectral imaging[J]. International Journal of Poultry Science, 2006, 5(10): 964-969. 被引量:1
  • 9张伟,潘磊庆,屠康.利用高光谱透射图像检测鸡种蛋早期孵化[J].农业工程学报,2012,28(21):149-155. 被引量:29
  • 10祝志慧,王巧华,王树才,戴明钰,马美湖.基于近红外光谱的孵前种蛋检测[J].光谱学与光谱分析,2012,32(4):962-965. 被引量:10

二级参考文献204

共引文献946

同被引文献285

引证文献19

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部