期刊文献+

基于情感计算的商品欺诈监测系统 被引量:2

E-COMMERCE FRAUD DETECTION SYSTEM BASED ON AFFECTIVE COMPUTING
下载PDF
导出
摘要 电子商务环境中商品评论对于客户有极强的导引作用,因此商家往往会制造虚假评论,欺诈消费客户。为了监控商家该种行为,将同款商品在不同商家处的评论,以情感计算的方式,转化为特征向量,与第三方专业评测网站和微博评论转化得到的向量比较,识别其中偏离度大的向量,即该商家的商品可能存在欺诈。实验证明,系统能够识别欺诈商家。 Product comments in e-commerce environment has sqrong guidance role on customers, therefore the merchants will usually falsify bogus comments to defraud customers. In order to monitor such behaviours of merchants, we transform the comments of the same product from different merchants to eigenvector by the way of affective computing, then compare it with the vector derived from the comments on the third-party professional assessment and test websites as well as on the microblogging, and identify those vectors with big deviation degree, that means the product of those merchants are possibly in fraudulence. Experiment proves that the system can recognise fraudulent merchants.
出处 《计算机应用与软件》 CSCD 2015年第9期54-58,77,共6页 Computer Applications and Software
关键词 离群点 电子商务 微博 情感计算 语义 Outlier detection E-commerce Microblogging Affective computing Semantics
  • 相关文献

参考文献18

  • 1岑薇.C2C中商家因素对消费者选择行为影响研究[J].现代商贸工业,2009,21(22):112-114. 被引量:5
  • 2Inthiran A, Alhashmi S M, Ahmed P K. A Reflection of Current Search Engine Techniques on Medical Search Environments [ C ]//Intelligent Environments (IE), 2010 Sixth International Conference on. IEEE, 2010 : 170 - 173. 被引量:1
  • 3Strader T J, Ramaswami S N. The value of seller trustworthiness in C2C online markets [ J ]. Communications of the ACM, 2002,45 ( 12 ) : 45 -49. 被引量:1
  • 4Yamamoto H, Ishida K, Ohta T. Modeling reputation management sys- tem on online C2C market[ J]. Computational & Mathematical Organi- zation Theory,2004,10 (2) : 165 - 178. 被引量:1
  • 5Piao C, An J, Fang M. Study on Credit Evaluation Model and Algorithm for C2C E-Commerce [ C ]//e-Business Engineering, 2007. ICEBE 2007. IEEE International Conference on. IEEE ,2007:392 - 395. 被引量:1
  • 6Wang Y,Lim E P. The evaluation of situational transaction trust in e- service environments [ C ]//e-Business Engineering,2008. ICEBE ' 08. IEEE International Conference on. IEEE ,2008:265 - 272. 被引量:1
  • 7Chen X, Liu Y, Sun H. AHP-Based Multi-Dimension Credit Evaluation Model for E-Commerce [ C ]//e-Business Engineering,2008. ICEBE ' 08. IEEE International Conference on. IEEE,2008:273 - 278. 被引量:1
  • 8郑斐然,苗夺谦,张志飞,高灿.一种中文微博新闻话题检测的方法[J].计算机科学,2012,39(1):138-141. 被引量:84
  • 9Hu M, Liu B. Mining opinion features in customer reviews [ C ]// AAAI. 2004,4:755 -760. 被引量:1
  • 10Kobayashi N, Inui K, Matsumoto Y, et al. Collecting evaluative expres- sions for opinion extraction[ M ]//Natural Language Precessing-IJCNLP 2004. Springer Berlin Heidelberg,2005:596 - 605. 被引量:1

二级参考文献124

共引文献426

同被引文献37

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部