摘要
通过配体交换法,在Au NPs表面分别引入羟基(-OH),羧基(-COOH)和甲基(-CH3),制备了3种表面修饰官能团的金纳米粒:Au-OH NPs,Au-COOH NPs和Au-CH3NPs,其平均粒径为(15.6±3.2)nm,ζ电位均为负值。MTT法对比研究表面修饰和未修饰的Au NPs与He La细胞和MCG-803细胞作用后的细胞存活率,当浓度达到197 ng·m L-1时,表现出低细胞毒性,且顺序为:Au NPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs。细胞周期研究结果发现,表面未修饰的Au NPs对细胞G2/M期活动有一定的阻滞作用。单个活细胞显微拉曼光谱原位对比研究表面修饰和未修饰的Au NPs与He La细胞的作用,结果表明:未修饰的Au NPs和Au-CH3NPs与细胞作用的主靶点可能为DNA骨架、碱基和细胞磷脂膜的极性头部,而Au-COOH NPs与Au-OH NPs对这些位点作用轻微。本研究为解释表面修饰-COOH和-OH官能团可降低Au NPs细胞毒性提供了研究证据。
Chemical functional groups of -CH3, -COOH and -OH have been introduced to the surface of AuNPs, separately. The AuNPs, Au-OH NPs, Au-COOH NPs and Au-CH3 NPs are spherical with dimension of (15.6± 3.2) nm, displaying negative potentials. The cytotoxicity of these AuNPs has been evaluated by methylthiazoletetrazolium (MTT) assay against Hela ceils and MCG-803 ceUs in vitro, separately. MTF data reveal that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng.mL1 for both HeLa and MCG-803 cells in vitro. The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs 〉Au-CH3 NPs 〉Au-COOH NPs ≈Au-OH NPs. Cell cycle analysis indicates that AuNPs cause cell cycle slightly arrest at the GJM phase. Micro-Raman spectra of individual living HeLa cells demonstrate that the backbone and nucleic bases of DNA as well as the polar headgroup of phospholipid in ceils are the probable target binding sites of AuNPs and Au-CH3 NPs. Whereas, the interfacial interactions are significantly reduced when ceils are treated with Au-COOH NPs and Au-OH NPs. Our results on the interaction mechanisms between AuNPs and cells demonstrate that AuNPs modified with surface functional groups of -COOH or -OH can improve their cytocompatibility.
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2015年第9期1903-1912,共10页
Chinese Journal of Inorganic Chemistry
基金
国家自然科学基金(No.21161003,21364002)
广西自然科学基金杰青(2013GXNSFGA019001)
教育部新世纪优秀人才支持计划(NCET-13-0743)
药用资源化学与药物分子工程教育部重点实验室主任基金(2015-A)资助项目
关键词
金纳米粒
表面官能团
细胞毒性
分子机制
gold nanoparticles (AuNPs)
surface functional groups
cycotoxicity
molecular mechanisms