期刊文献+

An Automated Approach to Passive Sonar Classification Using Binary Image Features

An Automated Approach to Passive Sonar Classification Using Binary Image Features
下载PDF
导出
摘要 This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.
出处 《Journal of Marine Science and Application》 CSCD 2015年第3期327-333,共7页 船舶与海洋工程学报(英文版)
关键词 binary image passive sonar neural classifier ship recognition short-time Fourier transform fractal-based method 分类方法 图像特征 被动声纳 神经网络分类器 二值 信号分割 特征提取 识别能力
  • 相关文献

参考文献30

  • 1Bao F, Li C, Wang X, Wang Q, Du S (2010). Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition. The Journal of the Acoustical Society of America, 128(1), 206-214. DOI: http://dx.doi.org/l 0.1121/1.3436543. 被引量:1
  • 2Becchetti C, Ricotti LP (1999). Speech recognition. John Wiley, New York, 1-67. 被引量:1
  • 3Chen C, Lee J, Lin M (2000). Classification of trader-water signals using neural network. Tamkang Journal of Science and Engineering, 3(1), 31-48. 被引量:1
  • 4Diamant R, Lampe L (2013). Underwater localization with time synchronization and propagation speed uncertainties. IEEE Transactions on Mobile Computing, 12(7), 1257-1269. DOI: 10.1109/TMC.2012.100. 被引量:1
  • 5Duda RO, Hart PE, Stork DG (2000). Pattern classification. John Wiley, New York, 282-320. 被引量:1
  • 6Eiekstedt D, Schmidt H (2003). A low-frequency sonar for sensor adaptive, multistatic, detection and classification of underwater targets with AUVs. Proceedings of the OCEANS, San Diego, CA, USA. 1440-1447. DOI: 10.1109/OCEANS.2003.178074. 被引量:1
  • 7Farrokhrooz M, Karimi M (2005) probabilistic neural network Ship noise classification using and AR model coefficients. Proceedings of the OCEANS, Washington, DC, USA, 1107-1110. DOI: 10.1109/OCEANSE.2005.1513213. 被引量:1
  • 8Farrokhrooz M, Karimi M (2011). Marine vessels acoustic radiated noise classification in passive sonar using probabilistic neural network and spectral features. Intelligent Automation and Soft Computing, 17(3), 369-383. DOI: http://dx.doi.org/10.1080/10798587.2011.10643155. 被引量:1
  • 9He Xiying, Cheng Jinfang, He Guangjin (2010). Application of BP neural network and higher order spectrum for ship-radiated noise classification. Proceedings of the 2nd International Conference on Future Computer and Communication, Wuhan, China, 712-716. DOI: 10.1109/ICFCC.2010.5497336. 被引量:1
  • 10Howell B, Wood S (2003). Passive sonar recognition and analysis using hybrid neural networks. Proceedings of the OCEANS, San Diego, USA, 1917-1924. DOI: 10.1109/OCEANS.2003.178182. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部