期刊文献+

K均值聚类算法的研究与并行化改进 被引量:1

Research on K-means Clustering Algorithm and Parallel Improved
下载PDF
导出
摘要 K均值算法是一种常用的聚类分析方法,广泛应用于图像处理和机器学习等领域。但该算法具有较高的计算复杂度,导致了算法具有较大的局限性。为了提高算法的运行效率,本文在深入分析算法基本原理的基础上,利用CUDA架构提供的强大计算能力对该算法进行了并行化改进。实验结果表明,算法在取不同的聚类数时均取得了较高的加速比。 K - means algorithm is a commonly used method of clustering analysis, which is widely used in the fields such as image processing and machine learning. Because of this algorithm has high computational complexity, this algorithm has great limitations in the fields of high real - time demand. In order to improve the efficiency of this algorithm, we deeply analysis the basic principle of this algorithm, and using powerful computation ability provided by CUDA to realize the algorithm, for improved parallel. The experimental results show that the parallel algorithm when using different clustering number has achieved a higher speedup.
作者 陈友
机构地区 [
出处 《测绘与空间地理信息》 2015年第9期42-44,共3页 Geomatics & Spatial Information Technology
基金 国家863项目(2013AA7032031D)资助
关键词 K均值算法 聚类分析 图形处理器 计算统一设备架构 K - means algorithm clustering analysis graphic processing unit compute unified device architecture
  • 相关文献

参考文献8

  • 1Jiawei Han,Micheline Kamber(著),范明,孟小峰(译).数据挖掘概念与技术[M].北京:机械工业出版社,2007.3.2. 被引量:64
  • 2毛国君,段立娟,王实,石云编著..数据挖掘原理与算法 第2版[M].北京:清华大学出版社,2007:329.
  • 3欧陈委..K-均值聚类算法的研究与改进[D].长沙理工大学,2011:
  • 4Sirotkovic J, Dujmic H, Papic V. K - means image segmen- tation on massively parallel gpu architecture[ C]. 2012 Pro- ceedings of the 35th International Convention, in MIPRO, 2012, pp. 489 - 494. 被引量:1
  • 5Chitade A. Z et al. Colour Based Image Segmentation Using K - Means Clustering[ J]. International Journal of Engineer- ing Science and Technology,2010,2 (10) : 5319 - 5325. 被引量:1
  • 6宋凌,李枚毅,李孝源.基于粒群优化的K均值算法及其应用[J].计算机工程,2008,34(16):201-203. 被引量:6
  • 7JASONSANDERS,EDWARDKANDROT.GPU高性能编程CUDA实战[M].聂雪军,译.北京:机械工业出版社,2011. 被引量:5
  • 8张舒,褚艳利.GPU高效能运算之CUDA[M].北京:中国水利水电出版社,2009. 被引量:2

二级参考文献5

  • 1Flanagan J A. Unsupervised Clustering of Symbol Strings[C]//Proc. of Intl' Joint Conference on Neural Networks. Portland Oregon, USA: [s. n.]. 2003: 3250-3255. 被引量:1
  • 2Krishma K, Nurty M N. Genetic K-means Algorithm[J]. IEEE Trans.on System, 1999, 29(3): 433-439. 被引量:1
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. Perth, Australia: [s. n.], 1995: 1942-1948. 被引量:1
  • 4Sclim S Z, Lsmailm A. K-means-type Algorithm: A Generalized Convergence Theorem and Characterization of Local Optima Reality[J], IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(1): 81-87. 被引量:1
  • 5The UCI KDD Archive. KDD99 Cup Dataset[EB/OL]. (1999-07-09). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 被引量:1

共引文献73

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部