期刊文献+

结构性稀疏阵列多信道联合估计

Multichannel Joint Estimation Via Structured Sparse Array
下载PDF
导出
摘要 多信道估计时,如果利用信道的稀疏性和多信道的相关性,可以提高信道估计性能。本文利用阵列信道的结构性稀疏特性,提出了一种多路分组稀疏LMS算法(Group Sparse LMS,GS-LMS)。该算法将多路信道作为一个整体同时进行自适应信道估计,通过引入l2,1范数,将结构性稀疏先验引入到稀疏LMS算法的代价函数中,导出新的滤波器权系数更新公式。仿真结果表明了在不同信道条件下,本文算法的稳态误差性能明显优于若干现有的稀疏LMS算法。 When we do muhichannel estimation,if the sparsity and relevance of multichannel are used, the performance of channel estimation can be improved. This paper proposes a Group Spame LMS algorithm which is based on structural sparse priori of the array channel. The algorithm takes these channels as a whole for adaptive channel estimation, a gradient descent recursion of the filter coefficient vector is deduced through introducing l2.1norm, which introduce structural sparse priori to the criterion function of sparse LMS algorithm. The simulation results show that, under different path conditions, steady state error performance of the proposed algorithm is obviously better than several existing sparse LMS algorithms.
出处 《信号处理》 CSCD 北大核心 2015年第8期995-1003,共9页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61401315)
关键词 信道估计 分组稀疏 最小均方(LMS)算法 l2 1范数 channel estimate group sparsity least mean square (LMS) l2.1 norm
  • 相关文献

参考文献18

二级参考文献134

  • 1Simon Haykin,郑宝玉译.自适应滤波器原理(第4版).北京:电子工业出版社,2003,504-526. 被引量:2
  • 2B. Farhang-Boroujeny, S. Gazor. Performance of LMS- based adaptive filters in tracking a time-varying plant. IEEE Trans. on Signal Processing, 1996, 44(11)..2868 2871 被引量:1
  • 3S. Gazor. Prediction in LMS-type adaptive algorithms for smoothly time raring environments. IEEE Trans. on Signal Processing, 1999, 47(6):1735-1739. 被引量:1
  • 4Y. Xue and X. Zhu. Wireless channel tracking based on self tuning second-order LMS algorithm. IEEE Proc. Commun. , 2003,150(2) :115- 120. 被引量:1
  • 5K. Shahtalebi, S. Gazor, S. Pasupthy et al. Second-or der H∞ optimal LMS and NLMS algorthms based on a second-order Markov model. IEE Proc.-Vis. Image Signal Process, 2000, 147(3) : 231-237. 被引量:1
  • 6Donoho D L. Compressed Sensing [ J ]. IEEE T. Inform. Theory. ,2006,52(4) : 1289-1306. 被引量:1
  • 7Candies E J ,Wakin M B. An Introduction To Compressive Sampling[J]. IEEE Signal. Proc. Mag. ,2008,25(2) : 21-30. 被引量:1
  • 8Unser M. Sampling-50 Years after Shannon [ J ]. Proceed- ings of the IEEE, 2000,88 (4) : 569 -587. 被引量:1
  • 9DeVore R A, Jawerth B, Lucier B J. Image compression through wavelet transform coding [ J ]. IEEE Transactions on Information Theory, 1992,38 (2) :719-746. 被引量:1
  • 10Fadili M J, Starck J L, Bobin J, et al. Image decomposi- tion and separation using sparse representations: An over- view [ J ]. Proceedings of the IEEE, IEEE, 2010,98 (6) : 983 -994. 被引量:1

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部