期刊文献+

激波冲击火焰的流动拓扑研究

Flow Topology Study on Shock-Flame Interaction
下载PDF
导出
摘要 为深入研究激波冲击火焰现象的内在机制,采用二维带化学反应的Navier-Stokes方程对现象进行数值研究,通过对速度梯度张量特征方程的分析证明Okubo-Weiss函数适用于可压缩流动,并重点分析火焰区的流动拓扑特性.结果表明,波后火焰区内Okubo-Weiss函数积分量基本守恒,但在火焰区内部和表面具有截然不同的流动状态,且火焰发展基本不受流场可压缩性的影响;波后火焰区的流动拓扑分类主要以焦点和鞍点为主,意味着流场中变形占主导. To deeply understand mechanism of shock wave interacting with a flame,a numerical study on a planar incident shock wave and reflected wave interacting with a spherical flame was carried out with two-dimensional Navier-Stokes equations coupled with chemical reaction. Okubo-Weiss function are proved appropriate for compressible flow by analyzing characteristic equation of velocity gradient tensor. Emphasis was placed on two-dimensional flow topology characteristics of flame zone. It shows that integral of OkuboWeiss function conserves within flame zone after passages of shock waves. However,inner and surface of flame zone display completely different flow status. Flow compressibility basically has no effect on evolution of flame. Besides,flow topology of flame zone is mainly controlled by foci and saddle,which means deformation is dominant in flow field.
作者 朱跃进 董刚
出处 《计算物理》 CSCD 北大核心 2015年第4期403-409,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11372140 11402102) 江苏省自然科学基金青年项目(BK20140524) 江苏大学高级专业人才科研启动基金(14JDG031)资助项目
关键词 激波 火焰 速度梯度张量 Okubo-Weiss函数 流动拓扑 shock wave flame velocity gradient tensor Okubo-Weiss function flow topology
  • 相关文献

参考文献4

二级参考文献44

  • 1Markstein G H. Nonsteady Flame Propagation. New York, MacMillan. 1964 被引量:1
  • 2Thomas G, et al. Experimental Observations of Flame Acceleration and Transition to Detonation Following Shock-Flame Interaction. Combust Theory Modelling. 2001, 5-573 被引量:1
  • 3Khokhlov A M, Oran E S. Numerical Simulation of Deflagration-to-Detonation Transition: the Role of Shock-Flame Interactions in Turbulent Flames. Combustion and FlamellT, 1999, 323-339 被引量:1
  • 4Alexeim Khokhlov, Elaine S Oran. Numerical Simulation of Detonation Initiation in a Flame Brush: The Role of Hot Spots. Combustion and Flame119, 1999, 400-416 被引量:1
  • 5Oran E S, Gamezo V N, Khokhlov A M. Effects of Boundary Layers and Wakes on Shock Flame Interactions and DDT. AIAA 2002-0766 被引量:1
  • 6Vadim N Gamezo, Alexei M Khokhlov, Elaine S Oran. The Influence of Shock Bifurcations on Shock-Flame Interactions and DDT. Combustion and Flame 126, 2001, 1810-1826 被引量:1
  • 7Maran S P, Sonneborn G, Pun C S J, et al. Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst[J]. Astrophysical Journal, 2000,545 (1) : 390-398. 被引量:1
  • 8Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process [R]. AIAA 87-1880, 1987. 被引量:1
  • 9Oran E S, Gamezo V N. Origins of the deflagration to-detonation transition in gas-phrase combustion[J]. Combus- tion and Flame, 2007,148(1/2) 14-47. 被引量:1
  • 10Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]//6th Symposium (International) on Combustion. Pittsburgh, USA: The Combustion Institute, 1957:387-398. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部