期刊文献+

基于多尺度分解的k邻域随机查找快速图像修复 被引量:5

Multi-scale Decomposition Based k-nearest-neighbor Random Search for Fast Image Completion
下载PDF
导出
摘要 该文提出一种基于多尺度分解的k邻域随机查找快速图像修复方法。基于双边滤波下采样分解图像,从图像最粗糙层开始,对每一粗糙层采用基于最小堆的k邻域随机查找算法快速搜索最佳匹配块,利用鲁棒优先级函数确定下一待修复块。每一粗糙层修复后用双边滤波上采样重建下一粗糙层,迭代得到最终的修复结果。与相关工作比较,所提方法的修复结果能够保持图像的细节和边缘信息,取得更高的修复质量。利用客观指标评价修复结果。实验结果表明该方法有效易行,修复的图像具有良好的可视效果。 Multi-scale decomposition based k-nearest-neighbor random search for fast image completion is presented. The image is decomposed using the bilateral filtering based down sampling. Starting from the coarsest level image, the most matching patch is searched using k-nearest-neighbor search algorithm based on the minimum heap for each coarse layer. The robust priority function is presented to determine the next patch that should be handled. The lower coarse layer is reconstructed using the bilateral filtering based up sampling after current coarse layer is repaired, so as to get the final result with iterative completion. Compared with related work, the presented algorithm preserves image details and edge information, and obtains higher completion quality. The completion results are evaluated utilizing the objective indictors. The experimental results show that presented method is effective, feasible, and the visual effect of the image completion is pleasing.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2097-2102,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61300125 61471160)资助课题
关键词 图像处理 图像修复 多尺度分解 k邻域随机查找 Image processing Image completion Multi-scale decomposition k-nearest-neighbor random search
  • 相关文献

参考文献16

  • 1He Kai-ming and Sun Jian. Image completion approaches using the statistics of similar patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2423-2435. 被引量:1
  • 2许建楼,冯象初,郝岩.改进的TV-Stokes图像修复模型及其算法[J].电子与信息学报,2012,34(5):1142-1147. 被引量:10
  • 3Guillemot C and Le Meur O. Image inpainting: overview and recent advances[J]. IEEE Signal Processing Magazine, 2014, 31(1): 127-144. 被引量:1
  • 4Criminisi A, Pérez P, and Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212. 被引量:1
  • 5Sun Jian, Yuan Lu, Jia Jia-ya, et al.. Image completion with structure propagation[J]. ACM Transactions on Graphic, 2005, 24(3): 861-868. 被引量:1
  • 6Wexler Y, Shechtman E, and Irani M. Space-time completion of video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 463-476. 被引量:1
  • 7白键,冯象初,王旭东.图像分解的多尺度变分模型[J].电子与信息学报,2013,35(5):1190-1195. 被引量:1
  • 8Barnes C, Goldman D B, Shechtman E, et al.. The PatchMatch randomized matching algorithm for image manipulation[J]. Communications of the ACM, 2011, 54(11): 103-110. 被引量:1
  • 9Zheng E, Dunn E, Jojic V, et al.. PatchMatch based joint view selection and depthmap estimation[C]. Computer Vision and Pattern Recognition (CVPR), Ohio, 2014: 1510-1517. 被引量:1
  • 10Cozzolino D, Poggi G, and Verdoliva L. Copy-move forgery detection based on PatchMatch[C]. IEEE International Conference on Image Processing (ICIP), Paris, 2014: 5312-5316. 被引量:1

二级参考文献27

  • 1Chan R H,Setzer S,and Steidl G.Inpainting by flexiblehaar-wavelet shrinkage[J].SIAM Journal on ImagingSciences,2008,1(3):273-293. 被引量:1
  • 2You X,Du L,Cheung Y,et al..A blind watermarking schemeusing new nontensor product wavelet filter banks[J].IEEETransactions on Image Processing,2010,19(12):3271-3284. 被引量:1
  • 3Chan T and Shen J.Mathematical models of local non-texture inpaintings[J].SIAM Journal on AppliedMathematics,2002,62(3):1019-1043. 被引量:1
  • 4Chan T and Shen J.Non-texture inpainting by curvaturedriven diffusions(CDD)[J].Visual Communication andImage Representation,2001,12(4):436-449. 被引量:1
  • 5Tai X C,Osher S,and Holm R.Image Inpainting Using aTV-Stokes Equation[M].Heidelberg,Germany,Springer,2007:3-22. 被引量:1
  • 6Chambolle A.An algorithm for total variation minimizationand applications[J].Journal of Mathematical Imaging andVision,2004,20(1/2),89-97. 被引量:1
  • 7Goldstein T and Osher S.The split Bregman method for L1regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343. 被引量:1
  • 8Wu C L and Tai X C.Augmented Lagrangian method,dualmethods and split-Bregman iterations for ROF,vectorial TVand higher order models[J].SIAM Journal on ImagingSciences,2010,3(3):300-339. 被引量:1
  • 9Goldstein T,Bresson X,and Osher S.Geometric applicationsof the split Bregman method:segmentation and surfacereconstruction[J].Journal of Scientific Computing,2010,45(1-3):272-293. 被引量:1
  • 10Bertalmio M,Sapiro G,Caselles V,et al..Imageinpainting[C].Proceedings of the ACM SIGGRAPH,NewOrleans,ACM Press,2000:417-424. 被引量:1

共引文献9

同被引文献49

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部