期刊文献+

基于倒谱预白化和形态学自互补Top-Hat变换的滚动轴承故障特征提取 被引量:5

Fault feature extraction for rolling element bearings based on cepstrum pre-whitening and morphology self-complementary top-hat transformation
下载PDF
导出
摘要 为了消除振动信号中离散频率分量和强背景噪声对提取滚动轴承故障特征频率的干扰,提出了一种新的基于倒谱编辑(Cepstrum Editing Procedure,CEP)预白化和形态学自互补Top-Hat变换的方法用于滚动轴承的故障特征提取。CEP能够去除故障振动信号中的周期性频率成分,剩余只包含背景噪声和碰撞损伤引起的非平稳冲击成分的白化信号,通过分析构造的形态学自互补Top-Hat变换滤波器,提出采用故障特征幅值能量比(Feature Amplitude Energy Radio,FAER)的方法自适应确定最优结构元素的尺度,预白化信号经过形态学滤波有效消除了背景噪声的干扰,提取了较为清晰的轴承故障特征频率。对实测轴承滚动体、内圈故障信号进行了分析,结果表明该方法可有效提取滚动轴承故障冲击成分并抑制噪声。 In order to eliminate interferences from discrete frequency components and strong background noises in vibration signals to extract fault features of rolling bearings,a new method based on combining the pre-whitening technology using cepstrum editing procedure( CEP) and the morphology self-complementary Top-Hat( STH)transformation theory was presented for extracting fault features of rolling bearings. CEP could eliminate periodic frequency components in fault vibration signals,and remain pre-whitening signals containing only non-stationary impact components from collision damage and background noise. Then,through analyzing the filter constructed with the morphology selfcomplementary Top-Hat transformation, a novel method named fault feature amplitude energy radio( FAER) was presented to adaptively select the optimal structural element( SE) scale. The interferences of background noise in prewhitening signals were eliminated effectively with morphological filtering,and the clearer fault feature frequencies of rolling bearings were extracted. The result showed that the proposed method is effective to extract fault impact components of roll bearings and suppress noises by analyzing vibration signals of rolling bearings with ball and inner race faults.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第15期77-81,149,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51307058) 河北省自然科学基金(E2014502052) 中央高校基本科研业务专项资金项目(2014XS83)
关键词 滚动轴承 倒谱编辑 信号预白化 自互补Top-Hat变换 特征幅值能量比 rolling bearing cepstrum editing procedure signal pre-whitening self-complementary Top-Hat transformation feature amplitude energy radio
  • 相关文献

参考文献12

  • 1王宏超,陈进,董广明,从飞云.基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J].振动与冲击,2013,32(1):35-37. 被引量:46
  • 2Yan Ru-qiang, Gao R X. Harmonic wavelet-based data filtering for enhanced machine defect identification [ J ]. Journal of Sound and Vibration, 2010, 329 ( 15 ) : 3203 - 3217. 被引量:1
  • 3王冬云,张文志.基于小波包变换的滚动轴承故障诊断[J].中国机械工程,2012,23(3):295-298. 被引量:41
  • 4WANG Dong, GUO Wei, WANG Xiao-juan. A joint sparse wavelet coefficient extraction and adaptive noise reduction method in recovery of weak bearing fault features from a multi- component signal mixture [ J ]. Applied Soft Computing, 2013, 13(10) :4097 -4104. 被引量:1
  • 5RANDALL R B,SAWALHI N. A new method for separating discrete components from a signal[J]. Journal of Sound & Vibration,2011,45(5):6-9. 被引量:1
  • 6Shen Chang-qing, He Qing-bo, Kong Fan-rang, et al. A fast and adaptive varying-scale morphological analysis method for rolling element bearing fault diagnosis [ J ]. Journal of Mechanical Engineering Science,2012,227 (6) : 1362 - 1370. 被引量:1
  • 7Dong Ya-bin, Liao Ming-fu, Zhang Xiao-long, et al. Faults diagnosis of rolling element bearings based on modified morphological method [ J ]. Mechanical Systems and Signal Processing, 2011, 25(4) :1276 - 1286. 被引量:1
  • 8Santhana Raj A, Murali N. Early classification of bearing faults using morphological operators and fuzzy inference [ J ]. IEEE Transactions on Industrial Electronics, 2013. 60 (2) : 567 - 574. 被引量:1
  • 9Borghesani P, Pennacchi P, Randall R B, et al. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions [ J ]. Mechanical Systems and Signal Processing, 2013, 36(2):370-384. 被引量:1
  • 10张晓飞,胡茑庆,胡雷,程哲.基于倒谱预白化和随机共振的轴承故障增强检测[J].机械工程学报,2012,48(23):83-89. 被引量:21

二级参考文献37

共引文献140

同被引文献43

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部