期刊文献+

基于非标准分析的粒计算研究 被引量:12

The Research of Granular Computing Based on Nonstandard Analysis
下载PDF
导出
摘要 该文着力于研究粒计算的基本理论.粒计算作为一种粒数数系被研究,在这种数系中研究粒运算的基本定律、粒与粒之间的不可区分关系;研究这种粒数系中描述型的形式语言等.采用的方法是基于非标准分析中的超实数理论研究实值粒运算应遵循的规则,也研究了伴随二元关系的信息粒的合成、加粗、加细、并和交运算等;在分析前人工作的基础上、基于超实数理论进一步为粒计算研究定义了一种新的不可区分关系,得到了几个相关性质,并且证明了相关结果.随后定义了描述这种粒数数系的描述型形式语言——一种带不可区分关系词的二阶粒逻辑;粒常量、粒变量、粒函数项的相关运算定律也被定义了.最后,以示例演示了这种粒逻辑适应于描述粒数学定理、粒公式化简等. In the article,we focus on studying fundamental theory of granular computing.Granular computing is studied as a granular number systems.Operation laws of granulations,the indiscernibility relation of granulations in the granular number systems are also studied.The formal language for describing the granular number systems needs also to be studied.We study the operation rules of real granulations to adopt the theory of hyperreal numbers in nonstandard analysis.The operations of compound,coarsening and refining,union and intersection of information granularity with binary relations are also studied in the article.We define further a new indiscernibility relation by hyperreal theory and get several related properties based on current relative researches.And related results are proved.Subsequently,the formal language for describing granular computing—agranular language with indiscernibility relation is defined.It is called a second order granular logic in the article.The related operations of granular constants,granular variables and granular function items used in the second-order granular logic are handled necessarily in the article.Finally,the significance of describing granular mathematical theorems defined in the granular number systems is illustrated with real examples.
出处 《计算机学报》 EI CSCD 北大核心 2015年第8期1618-1627,共10页 Chinese Journal of Computers
基金 国家自然科学基金(61070139) 江西省自然科学基金(20114BAB201039) 江西省教育厅科技计划项目(GJJ14134)资助
关键词 粗糙集 模糊集 粒计算 二阶粒逻辑 粒数学 超实数 非标准分析 Rough sets fuzzy sets granular computing second-order granular logic granular mathematics hyperreal number nonstandard analysis
  • 相关文献

参考文献29

  • 1Zadeh LA. Fuzzy sets and information granularity//Gupta M, Ragade R, Yager Reds. Advances in Fuzzy Set Theory and Applications. Amsterdam: North Holland, 1979: 3-18. 被引量:1
  • 2Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. 被引量:1
  • 3Pawlak Z. Rough logic. Bulletin of Polish Academy of Sciences, 1987, 35(5-6): 253-259. 被引量:1
  • 4Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht . Kluwer Academic Publishers, 1991. 被引量:1
  • 5Orlowska E. A logic of indicernibility relation//Skowron A ed. Proceedings of the Computation Theory. Lecture Notes in Computer Science 208. Heidelberg: Physica-Verlag , 1985: 177-186. 被引量:1
  • 6Chakraborty M K, Banerjee M. Rough logic with rough quantifiers. Warsaw University of Technology, Warsaw: ICS Research Report 49/93, 1993. 被引量:1
  • 7Nakamura A. A rough logic based on incomplete information and its applications. International Journal of Approximate Reasoning, 1996, 15(4): 367-378. 被引量:1
  • 8Nakamura A, Matsueda M. Rough logic on incomplete knowledge systems//Lin T Y ed. Proceedings of the 3rd International Workshop on Rough Sets and Soft Computing (RSSC' 94). San Jose, California, USA: San Jose State University, 1994: 56-64. 被引量:1
  • 9Nakamura A. Graded modalities in rough logic//Polkowski L, Skowron A eds. Rough Sets, Knowledge Discovery l. Heidelberg: Physica-Verlag , 1998: 192-208. 被引量:1
  • 10Hobbs J R. Granularity/ /Proceedings of the 9th International J oint Conference on Artificial Intelligence. Los Angeles, USA, 1985: 432-435. 被引量:1

二级参考文献75

  • 1刘清,黄兆华.G-逻辑及其归结推理[J].计算机学报,2004,27(7):865-873. 被引量:28
  • 2刘清,孙辉.从Rough集的发展前景看粒计算的研究趋势[J].南昌工程学院学报,2006,25(5):1-10. 被引量:6
  • 3[2]T Y Lin, Q Liu. First-order rough logicⅠ: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996, 27(2-3): 137~154 被引量:1
  • 4[3]A Skowron. Toward intelligent systems: Calculi of information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 9~30 被引量:1
  • 5[4]A Skowron, J Stepaniuk, James F Peters. Extracting patterns using information granules. Bulletin of International Rough Set Society, 2001, 5(1/ 2): 135~142 被引量:1
  • 6[6]Q Liu. Granular language and its deductive reasoning. Communications of Institute of Information and Computing Machinery, 2002, 5(2): 63~66 被引量:1
  • 7[8]M Banerjee, M K Chakraborty. Rough algebra. Institute of Computer Science, Warsaw University of Technology, ICS, Tech Rep: 47/93, 1993 被引量:1
  • 8[9]Q Liu. λ-level rough equality relation and the inference of rough paramodulation. In: Proc of the 2nd Int'l Conf on Rough Sets and Current Trends in Computing(RSCTC'2000), LNAI 2005. Berlin: Springer, 2000. 462~469 被引量:1
  • 9[11]Qing Liu, Qun Liu. Approximate reasoning based on granular computing in granular logic. 2002 Int'l Conf on Machine Learning and Cybernetics, Hoboken, USA, 2002 被引量:1
  • 10[12]Q Liu. Granules and reasoning based on granular computing. In: Proc of the 16th Int'l Conf on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems(IEA/AIE 2003), LNAI 2718. Berlin: Springer, 2003. 516~527 被引量:1

共引文献110

同被引文献78

引证文献12

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部