期刊文献+

面向大规模学术社交网络的社区发现模型 被引量:10

Community detection model in large scale academic social networks
下载PDF
导出
摘要 针对基于标签传播的复杂网络重叠社区发现算法中预先输入参数在真实网络中的局限性以及标签冗余等问题,提出一种基于标签传播的面向大规模学术社交网络的社区发现模型。该模型通过寻找网络中互不相交的最大极大团(UMC)并对每个UMC中的节点赋予唯一标签来减少冗余标签,提高社区发现的效率以及稳定性。标签更新时以UMC作为核心单位采用亲密度的方式由中心向四周更新UMC邻接节点的标签及权重,以权重最大值的方式更新网络中非UMC邻接节点的权重。后期处理阶段采用自适应阈值方式去除节点标签中的噪声,有效克服了预先输入重叠社区个数在真实网络中的局限性。通过在学术社交网络平台——学者网数据集上的实验表明,该模型能够将具有一定共性的节点划分到同一个社区中,并为学术社交网络平台进一步的好友推荐、论文分享等精确的个性化服务提供了支持。 Concerning the problem that community detection algorithm based on label propagation in complex networks has a pre-parameter limit in the real network and redundant labels, a community detection model in large scale academic social networks was proposed. The model detected Utmost Maximal Cliques (UMC) in the academic social network and arbitrary intersection between the UMC is the empty set, and then let nodes of each UMC share the unique label by reducing redundant labels and random factors, so the model increased the efficiency and stability of the algorithm. Meanwhile the model completed label propagation of the UMC adjacent nodes using closeness from core node groups (UMC) to spread around, Non-UMC adjacent nodes in the network were updated according to the maximum weight of its neighbor nodes. In the post-processing stage an adaptive threshold method removed useless labels, thereby effectively overcame the pre-parameter limitations in the real complex network. The experimental results on academic social networking plafforrn--SCHOLAT data set prove that the model has an ability to assign nodes with certain generality to the same community, and it provides support of the academic social networks precise personalized service in the future, such as latent friend recommendation and paper sharing.
出处 《计算机应用》 CSCD 北大核心 2015年第9期2565-2568,2573,共5页 journal of Computer Applications
基金 国家863计划项目(2013AA01A212) 国家自然科学基金资助项目(61272067 61370229) 广东省自然基金团队研究项目(S2012030006242) 广东省自然科学基金-博士科研启动项目(2014A030310238) 广东省教育厅特色创新项目(2014WTSCX078) 广东技术师范学院校级项目(2014)
关键词 社交网络 社区发现 重叠社区 标签传播 最大极大团 自适应阈值 social network community detection overlapping community label propagation Utmost Maximal Clique(UMC) adaptive threshold
  • 相关文献

参考文献17

  • 1PALLA G, DERENYI I, FARKAS I, et al. Uncovering the overlap- ping community structure of complex networks in nature and society [ ]]. Nature, 2005,435(7043) : 814 - 818. 被引量:1
  • 2AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal muhiscale complexity in networks [ J]. Nature, 2010, 466(7307): 761 -764. 被引量:1
  • 3LANCICHINETTI A, FORTUNATO S, KERTESZ J. Detecting the overlapping and hierarchical community structure in complex net- works [ J]. New Journal of Physics, 2009, 11 (3) : 033015. 被引量:1
  • 4RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time al- gorithm to detect community structures in large-scale networks [ EB/ OL]. [ 2015- 01- 08 ]. http://wenku, baidu, corn/view/ d6c2 d36ba98271 fe910et9 c9. html. 被引量:1
  • 5JIN H, WANG S, LI C. Community detection in complex networks by density-based clustering [ J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(19) : 4606 -4618. 被引量:1
  • 6XIA Z, BU Z. Community detection based on a semantic network [ J]. Knewledge-Based Systems, 2012, 26:30 - 39. 被引量:1
  • 7BARBIERI N, BONCH F, MANCO G. Cascade-based community de- tection [ C]// Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:33 -42. 被引量:1
  • 8DEV H, ALl M E, HASHEM T. User interaction based community detection in online social networks [ M]// BHOWMICK S S, DYRESON C, JENSEN C S, et al. Database Systems for Advanced Applications, LNCS 8422. Bedim Springer, 2014:296-310. 被引量:1
  • 9GREGORY S. Finding overlapping communities in networks by label propagation [ EB/OL]. [2015-01-08]. http://iopsnience, iop. org/ 1367-2630/12/10/103018/pdf/1367-2630_12 10_103018. pdf. 被引量:1
  • 10XIE J, SZYMANSKI B K. Towards linear time overlapping com- munity detection in social networks [ M]// TAN P-N, CHAWLA S, HO C K, et al. Advances in Knowledge Discovery and Data Mining, LNCS 7302. Berlin:Springer, 2012:25-36. 被引量:1

同被引文献73

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2NEWMAN M E J. The structure and function of complex net- works[J].SIAM Review,2003,45(2) : 167 -256. 被引量:1
  • 3NEWMAN M E J, GIRVAN M. Finding and evaluating commu- nity structure in networks [J]. Physical Review E, 2004, 69 (2) : 026113. 被引量:1
  • 4PALLA G, DERENYI I, FARKAS I, et al. Uncovering the over- lapping community structure of complex networks in nature and society [J t. Nature,2005,435 (7043) : 814. 被引量:1
  • 5GREGORY S. Finding overlapping communities using disjoint community detection algorithms [M]//Complex Networks. Heidelberg: Springer,2009:47 - 61. 被引量:1
  • 6CHEN D, SHANG M, LV Z, et al. Detecting overlapping com- munities of weighted networks via a local algorithmE J]. Physica A: Statistical Mechanics and its Applications,2010,389 ( 19 ) : 4177 -4187. 被引量:1
  • 7SHEN H, CHENG X, CA/K, et al. Detect overlapping and hier- archical community structure in networks[J]. Physica A: Statis- tical Mechanics and its Applications,2009,388 ( 8 ) : 1706 - 1712. 被引量:1
  • 8Gruzd A.Non-academic and Academic Social Networking Sites for Online Scholarly Communication [EB/OL].[2016-01-15]. http://www.sciencedirect.com/science/article/pii/B97818433468 14500025. 被引量:1
  • 9Wei J,He D,Jiepu Jiang.User participation in an academic so- cial networking service: a survey of open group users on Mendeley [J].Journal of the American Society for Information Science & Technology,2015,66(5):890-904. 被引量:1
  • 10Thelwall M,Kousha K.Academia.edu: social network or aca- demic network? [J].Journal of the Association for Information Science and Technology,2014,65(4): 721-731. 被引量:1

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部