期刊文献+

微重力条件下热管吸热器瞬态热分析 被引量:2

Transient Thermal Analysis of Heat Pipe Receiver under Microgravity
下载PDF
导出
摘要 基于微重力条件下的导热控制微分方程,采用焓法对热管吸热器相变材料容器进行了二维数值建模与仿真,在同时考虑空穴和相变的情况下,对微重力条件下蓄热单元相变传热进行了模拟计算,分析了空穴率对蓄热容器内部的温度场和热性能的影响,并将计算结果同美国航空航天局(NASA)方案热管吸热器蓄热单元相变传热计算结果进行了比较,验证了文中微重力条件下计算模型的合理性与准确性。研究结果表明:空穴影响着蓄热单元相变的进程,空穴的存在增加了容器内部的温度梯度,使得容器的蓄热能力降低;由于热管径向温差较小,热管壁温在相变材料熔点附近变化较小,从而在一定程度上能缓解热斑和热松脱现象。 High temperature heat pipe receivers are commonly used as a core component of space solar dynamic power system. On the base of heat conduction governing differential equation under microgravity, two-dimensional numerical analysis of PCM container was conducted by a enthalpy method.With both void cavity and phase change considered,thermal performance of heat pipe receiver was analyzed.Numerical results were compared with NASA results.The accuracy of calculation model under gravity was verified.The results indicate that void cavity influences the process of phase change.The void cavity reduces the utility and thermal storage ability of PCM.The temperature gradient of PCM zone is very significant because of the void cavity. The PCM contained in the integrated heat pipe performs the averaging function of the heat loads.Normal working of wick ensures the uniformity of heat pipe,thus heat pipe receiver alleviates thermal spot and thermal ratcheting.
出处 《中国空间科学技术》 EI CSCD 北大核心 2015年第4期46-52,共7页 Chinese Space Science and Technology
基金 国家自然科学基金(51476172)资助项目
关键词 空间太阳能发电系统 热管吸热器 相变材料 空穴 相变 航天器 Space solar power system Heat pipe receiver Phase change material Void cavity Phase change Spacecraft
  • 相关文献

参考文献12

  • 1崔海亭,袁修干,邢玉明,侯欣宾.空间站太阳能热动力发电系统研究进展[J].中国空间科学技术,2002,22(6):34-42. 被引量:3
  • 2NICOLAS PETER. Space power and its implications--the case of europe [J]. Acta Astronautica, 2010, 66(3-4): 348-354. 被引量:1
  • 3杨阳,段宝岩,黄进,李勋,张逸群,范健宇.OMEGA型空间太阳能电站聚光系统设计[J].中国空间科学技术,2014,34(5):18-23. 被引量:35
  • 4王希季.中国载人航天工程的外部设计[J].中国空间科学技术,2002,22(5):1-8. 被引量:1
  • 5MURAT M KENISARIN. High-temperature phase change materials for thermal energy storage [J]. Renewable and Sustainable Energy Reviews, 2009: 11-16. 被引量:1
  • 6ABDALLA ALRASHDAN, AHMAD TURKI MAYYAS, SAID AL-HALLAJ. Thermo-meehanical behaviors ofthe expanded graphite-phase change material matrix used for thermal management of Li-Ion battery packs [J]. Journal of Materials Processing Technology, 2010, 210(1).. 174 179. 被引量:1
  • 7STRUMPF H J, COOMBS M G. Advanced heat receiver conceptual design study [R]. N88-25977, Lewis Research Center, 1988. 被引量:1
  • 8ROGER A CRANE. Thermal evaluation of advanced solar dynamic heat pipe receiver performance ER. NASA Contractor Report, 185117, 1989. 被引量:1
  • 9崔海亭.空间站太阳能热动力发电系统吸热/蓄热器优化研究[D].北京:北京航空航天大学,2003. 被引量:1
  • 10KESLAKE T W, IBRAHIM M B. Two dimensional model of space station freedom thermal energy storage canister [J]. Journal of Solar Energy Engineering, 1992, 114(5).. 114-121. 被引量:1

二级参考文献37

  • 1王希季 包妙琴.工程设计学[M].北京:宇航出版社,1984.. 被引量:2
  • 2Cao Y D,Int J Heat Mass Transf,1989年,32卷,7期,1289页 被引量:1
  • 3蒋大鹏,硕士学位论文,1991年 被引量:1
  • 4郭宽良,计算传热学,1988年 被引量:1
  • 5Southam D L. Power system comparison for manned space station, AIAA 64-721. 被引量:1
  • 6Baraona C R. Photovoltaic power for space station freedom, NASA TM-102569, N90-2187, 1989. 被引量:1
  • 7Niggemann R, McKenna R, Chaudoir D, et. al. A solar dynamic power conversion system for space station. AIAA 85-1480. 被引量:1
  • 8Gietl E B, Gholdston E W, Cohen F. The architecture of the electric power system of the international space station and its application as a platform for power technology development. AIAA 2000-2954,855-864 被引量:1
  • 9Landis G A, Bailey S G, Piszczorr M F. Recent advances in solar cell technology. AIAA 95-0027. 被引量:1
  • 10Arnold D T. Solar dynamic power systems from 3 to 100kW. AIAA64-724. 被引量:1

共引文献43

同被引文献47

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部