摘要
运用Nevunlinna值分布理论和整函数的相关理论,研究了2类不同系数的2阶线性微分方程解的增长性.假设A(z)=h(z)eP1(z),其中P1(z)是m次多项式,h(z)是ρ(h)<m的整函数,B(z)是1个级为ρ(B)≠m的超越整函数,证明了方程f″+Af'+Bf=0的每1个非零解都是无穷级;又假设A(z)是方程f″+P2(z)f=0的非零解,其中P2(z)是n次多项式,B(z)是Fabry缺项级数且2ρ(B)≠n+2,也证明了方程f″+Af'+Bf=0的每1个非零解都具有无穷级.
By using the Nevunlinna theory and the theory of entire functions,the growth of solutions of the second order linear differential equations with two different coefficients is considered. Let A( z) = h( z) eP1( z)be an entire function,where P1( z) is a polynomial of m degree and h( z) is an entire function of order ρ( h) m,and let B( z)be a transcendental entire function of order ρ( B) ≠m. Then every nontrivial solution of f ″ + Af ′ + Bf = 0 is of infinite order. Similarly,let A( z) be a nontrivial solution of f ″ + P2( z) f = 0,where P2( z) is a polynomial of degree and let B( z) be the Fabry gap series of order ρ( B) ≠( n + 2) 2. Then every nontrivial solution of f ″ + Af′ + Bf = 0 is also of infinite order.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2015年第4期340-344,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11171170)资助项目
关键词
整函数
无穷级
线性微分方程
Fabry缺项级数
entire function
infinite order
linear differential equations
Fabry gap series