摘要
It is significant for low-cost preparation of YBa2Cu3O7-δ(YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the present work,a distinct nucleation mechanism was proposed based on a transient liquid phase induced by the size effect as well as near-equilibrium assumption. With this scheme the nucleation of YBCO prepared by metal–organic deposition(MOD) or the physical vapor deposition BaF2 process was semi-quantitatively analyzed, revealing that the direct driving force for nucleation is YBCO supersaturation in the liquid phase. The theoretical analysis on the nucleation orientation portion is evidenced by the experimental result.
It is significant for low-cost preparation of YBa2Cu3O7-δ(YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the present work,a distinct nucleation mechanism was proposed based on a transient liquid phase induced by the size effect as well as near-equilibrium assumption. With this scheme the nucleation of YBCO prepared by metal–organic deposition(MOD) or the physical vapor deposition BaF2 process was semi-quantitatively analyzed, revealing that the direct driving force for nucleation is YBCO supersaturation in the liquid phase. The theoretical analysis on the nucleation orientation portion is evidenced by the experimental result.
基金
Project supported by the Science and Technology Commission of Shanghai Municipality,China(Grant Nos.13111102300 and 11dz1100302)
the National Natural Science Foundation of China(Grant Nos.11174193 and 51202141)
the National Basic Research Program of China(Grant Nos.2011CBA00105)
the Science and Technology Commission of Shanghai Municipality,China(Grant No.14DZ2260700)